Forest Preserve District of Will County Properties in the Vicinity of the Proposed South Suburban Airport: Baseline User, Wildlife and Habitat Studies (2004)

Final Report

October 24, 2006

Prepared by:

A **tyco** International Ltd. Company

Earth Tech, Inc. 10 S. Riverside Plaza, Suite 1900 Chicago, IL 60606

Table of Contents

Section Pa	age
EXECUTIVE SUMMARY	ii
INTRODUCTION	1
BACKGROUND	1
OBJECTIVE	1
STUDY SITES	1
AREAS OF CONCERN	2
STUDY APPROACH	2
USER/USE SURVEYS	4
METHODS	4
RESULTS	5
Wildlife Populations	5
Perceived Usage	6
Activities	6
Demographic Profiles	6
Summary of User Satisfaction	
Total Visitors and Projected Use	7
TERRESTRIAL MONITORING	
AMPHIBIAN AND REPTILE MONITORING	9
Methods	9
Results	
AVIAN MONITORING	14
Methods	14
Results	
VEGETATION MONITORING	16
Methods	16
Sampling Protocols	16
Results	
AQUATIC MONITORING	28
FISH MONITORING	28
Methods	28
Results	
BENTHIC MACROINVERTEBRATE MONITORING	28
Methods	28
Results	29
SUMMARY	31
LITERATURE CITED	32

APPENDICIES

APPENDIX A: User Study Results APPENDIX B: Amphibian and Reptile Monitoring Results APPENDIX C: Avian Monitoring Results APPENDIX D: Vegetation Monitoring Results APPENDIX E: Floristic Quality Assessment Reports APPENDIX F: Fish Monitoring Results APPENDIX G: Benthic Macroinvertebrate Monitoring Results

FOREST PRESERVE DISTRICT OF WILL COUNTY PROPERTIES IN THE VICINITY OF THE PROPOSED SOUTH SUBURBAN AIRPORT: BASELINE USER, WILDLIFE AND HABITAT STUDIES (2004)

EXECUTIVE SUMMARY

The Forest Preserve District of Will County (FPDWC) and the Illinois Department of Transportation (IDOT) executed a Memorandum of Agreement (MOA) to establish a methodology to measure and record baseline conditions at Goodenow Grove Nature Preserve, Raccoon Grove Nature Preserve and Monee Reservoir, three properties owned and managed by the FPDWC in northeastern Will County, Illinois. The objectives of the Baseline Study are to establish baseline conditions, to establish monitoring protocols and to develop methodologies for determining impacts attributable to the proposed South Suburban Airport.

The study sites included:

- Goodenow Grove Nature Preserve is a 780-acre preserve that was established in 1938. In 1996, 541 acres of the preserve were dedicated as an Illinois Nature Preserve. Goodenow Grove is the southernmost of a series of preserves within the Plum Creek Greenway.
- *Raccoon Grove Nature Preserve* was established in 1937 and is a 210-acre dedicated Illinois Nature Preserve, located west of the airport site and south of Monee. It is the closest preserve to the proposed airport site.
- *Monee Reservoir* is a 195-acre preserve that was established in 1988.

Baseline studies conducted include user/use surveys and habitat monitoring (terrestrial and aquatic). Terrestrial monitoring included amphibian and reptile, avian and vegetation monitoring. Aquatic monitoring included fish and benthic macroinvertebrate monitoring. The methodological approach included the following aspects:

- User/use surveys collected reservation and programs numbers and visitor counts included surveys to gauge user satisfaction and profiles.
- Avian and vegetation methods used are consistent with the Critical Trends Assessment Program (CTAP) developed by the Illinois Department of Natural Resources (IDNR).
- Vegetation monitoring emphasized structural habitat variables in order to provide a context for analysis of trends in animal abundance.
- The Floristic Quality Assessment (FQA) was used as suggested by Swink and Wilhelm (1994) for Chicagoland flora.
- One representative plot was established at each preserve in each of three vegetation communities (forest, grassland and wetland) using the CTAP methodology to ensure sampling of each community type, given the random location of the transects.

User/Use Surveys

Visitors reported strong satisfaction with the environmental and physical conditions at the three preserves. Two out of three visitors reported seeing some type of wildlife during their visit. One out of four visitors believes that the preserve they visited is underused. The most frequent activities reported were:

- Fishing, 40% of visitors
- Walking/hiking, 28% of visitors
- Picnics, 12% of visitors
- Relaxing/reading/napping, 11% of visitors

Amphibian and Reptile Monitoring

A total of 12 species, seven amphibians and five reptiles, were captured or observed at the combined study sites. The highest species richness was at Goodenow Grove Woodland, with a total of nine species. The remaining sites had five to six species each.

Avian Monitoring

Over the course of monitoring 111 species and 2,015 individuals were identified. Forest dependent species comprised the highest portion (approximately 56%) of habitat dependent species overall, and most were observed in forested habitat at Goodenow Grove or Raccoon Grove. The highest numbers of neotropical migrant species were found in forested habitat in Goodenow Grove and in wetland habitat in Monee Reservoir.

Vegetation Monitoring

A total of 21 forest, 12 grassland and one wetland plots were sampled for an overall total of 34 plots. Six of these were CTAP plots (two forest, three grassland and two wetland). The grassland and wetland CTAP plots (four plots) were only sampled using CTAP methodology; the forested CTAP plots (two plots) were chosen from existing avian/vegetation plots because of their representative quality. Thus a total of 30 avian/vegetation plots were sampled. Floodplain and mesic forest plots were dominated by native trees and shrubs, with minimal numbers of introduced or invasive species. Wetlands were dominated by native perennial forbs, with perennial grasses and sedges also noted. Mesic upland forest plots were dominated by native trees showed the lower percentages of native species, but were still dominated by native perennial forbs and grasses. Some of these grassland plots were in recovering agricultural fields.

Fish and Benthic Macroinvertebrate Monitoring

Fish and benthic macroinvertebrate samples were collected from historical stream sample sites and were part of a larger dataset gathered largely on private land throughout the vicinity of the proposed airport footprint. Fish species richness and biotic quality were down slightly from previous sampling events. Macroinvertebrate abundance and richness were also lower than previous samples. Low species richness and abundance in these samples precludes drawing any definite conclusions about water quality in the sampled streams.

FOREST PRESERVE DISTRICT OF WILL COUNTY PROPERTIES IN THE VICINITY OF THE PROPOSED SOUTH SUBURBAN AIRPORT: BASELINE USER, WILDLIFE AND HABITAT STUDIES (2004)

INTRODUCTION

BACKGROUND

The Forest Preserve District of Will County (FPDWC) and the Illinois Department of Transportation (IDOT) executed a Memorandum of Agreement (MOA) to establish a methodology to measure and record baseline conditions at Goodenow Grove Nature Preserve, Raccoon Grove Nature Preserve and Monee Reservoir, three properties owned and managed by the FPDWC in northeastern Will County, Illinois. The established methodology will be used to document environmental impacts to the FPDWC properties from the proposed South Suburban Airport (SSA). The proposed SSA will be developed over an extended period of time. Its potential environmental impacts to FPDWC properties are not anticipated to occur until later stages of airport development. The FPDWC and IDOT agreed, through the MOA, to gather data prior to construction and operation of the airport to establish baseline conditions.

The results of this study will be used to define criteria to determine if airport-related impacts occur to FPDWC properties. Identification of these criteria will be a joint effort between IDOT and the FPDWC, utilizing the results of this study to establish benchmarks.

OBJECTIVE

The objectives of this Baseline Study are outlined below:

- 1. To establish baseline conditions of the number of users, types of uses, wildlife and habitat which might potentially be affected by future airport construction or operations.
- 2. To identify any existing trends or large scale ecological processes already operating in the region so airport impacts might be more clearly distinguished from other influences.
- 3. To establish a monitoring protocol and frequency of monitoring.
- 4. To develop a methodology for determining impacts attributable to the airport

STUDY SITES

Goodenow Grove Nature Preserve – This 780-acre preserve was established in 1938. In 1996, 541 acres of the preserve were dedicated as an Illinois Nature Preserve. Goodenow Grove is the southernmost of a series of preserves within the Plum Creek Greenway. The site includes floodplain forest and woodland, northern flatwoods and savanna communities on adjacent upland. Grasslands are also present, especially in the western part of the site along Route 394. Wetlands, including marsh, sedge meadow and man-made ponds are scattered throughout the preserve. This site is unusual because it provides habitat for species characteristic of both eastern deciduous forests and eastern tallgrass prairie. Public uses include hiking, picnicking, camping, ski trails, fishing, bird watching, sledding, skating, an environmental education center, education programs, special use permits, scientific monitoring and research programs.

Raccoon Grove Nature Preserve – This preserve was established in 1937 and is a 210acre dedicated Illinois Nature Preserve, located west of the airport site and south of Monee. It is the closest preserve to the proposed airport site. Natural communities include mesic and dry-mesic upland forest, mesic floodplain forest, a small area of savanna and a small prairie restoration. Its public uses consist of restoration of prairie and savanna habitat, nature walks, bird watching, hiking, picnicking, educational programs, special use permits, scientific monitoring and research programs.

Monee Reservoir – This 195-acre preserve was established in 1988. Its public uses consist of fishing, wildlife observation, picnicking, boating, hiking, ice-skating, snowshoeing, dog sledding, cross-country skiing, special use permits and educational programs.

Exhibit 1, located at the end of this section, shows the locations of all three preserves in relation to the proposed airport boundary.

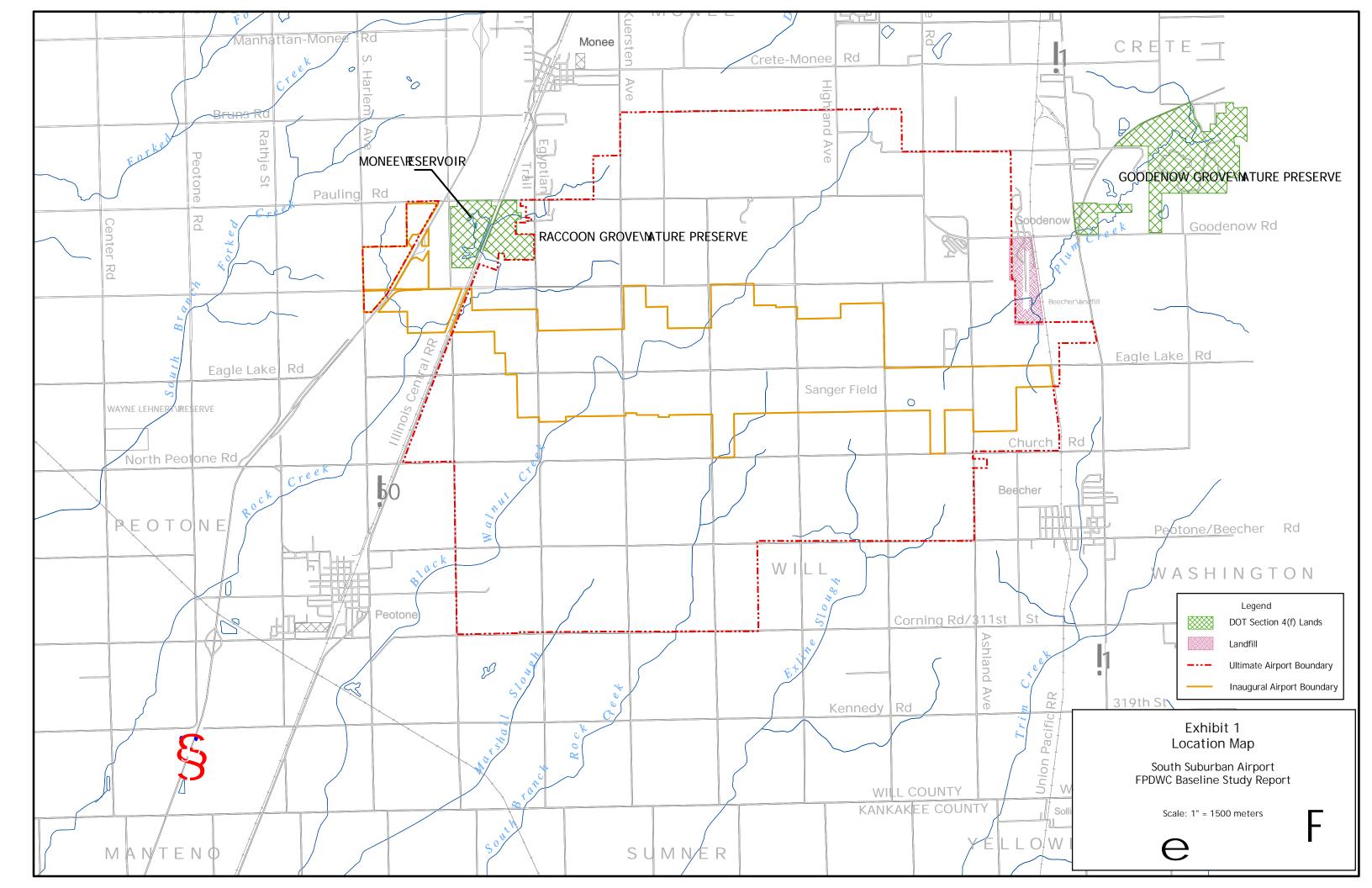
AREAS OF CONCERN

The FPDWC identified the following specific areas and uses at the above properties that they consider to be particularly sensitive to external impacts:

- The visitor center, concession and rental stand at Monee Reservoir
- Fishing and boating at Monee Reservoir
- Programs and events by others, and facility rentals at Goodenow Grove and Monee Reservoir
- District programs and events at Monee Reservoir and Goodenow Grove
- Camping at Goodenow Grove
- The Plum Creek Nature Center at Goodenow Grove
- Wildlife viewing opportunities at all three preserves
- Changing local and county demographics resulting in changes in needs, supply and demand considerations away from those which resulted in the existing acquisitions, developments and uses at these preserves.
- General use and peaceful enjoyment at the preserves, the sense of isolation and the outdoor experience.
- Use of sites as benchmarks for long-term scientific and ecological studies.

STUDY APPROACH

Baseline studies conducted include:


- User/Use Surveys
- Habitat Monitoring
 - Terrestrial Monitoring
 - Amphibian and Reptile Monitoring
 - Avian Monitoring
 - Vegetation Monitoring
 - Aquatic Monitoring
 - Fish Monitoring

Benthic Macroinvertebrate Monitoring

General approaches regarding methodology and sampling protocols were discussed with IDOT and FPDWC and agreed upon prior to commencing field activities. These approaches included the following:

- Animal assemblages, rather than single species, were the focus of the studies. By monitoring full ranges of selected taxa, species richness and diversity information are available as part of the dataset.
- Avian communities were monitored from April to June to capture the majority of breeding residents and migrants.
- Avian and vegetation methods used are consistent with the Critical Trends Assessment Program (CTAP) developed by the Illinois Department of Natural Resources (IDNR). A baseline was established at each preserve, along an abandoned railroad right-of-way at Goodenow Grove and along roads at Raccoon Grove and Monee Reservoir, which transected the preserves. Transects were located by random numbers along the baselines and plots were established along each transect at distances dictated by habitat type.
- Vegetation monitoring emphasized structural habitat variables in order to provide a context for analysis of trends in animal abundance.
- The Floristic Quality Assessment (FQA) was used as suggested by Swink and Wilhelm (1994) for Chicagoland flora.
- One representative plot was established at each preserve in each of three vegetation communities (forest, grassland and wetland) using the CTAP methodology to ensure sampling of each community type, given the random location of the transects.

Each study category is presented in a separate section including study-specific methodology, field activities, analysis and results.

USER/USE SURVEYS

To determine potential impacts to users or to the use of the FPDWC properties, a number of parameters need to be quantified and measured over time for each preserve. These parameters include:

- Reservation and Programs Numbers
- Visitor Counts
- User Surveys

Information was gathered from logs maintained by the FPDWC, on-site vehicle and visitor counts, comment logs, visitor sign-in sheets and on-site interviews/questionnaires. A sub-consultant, Richard Day Research, Inc., (RDR) was contracted to design the survey instrument and collect all data. IDOT and FPDWC approved the initial sample design and the selection of the sub-consultant.

All exhibits and tables referenced in this section can be found in **Appendix A** at the end of this report.

METHODS

User surveys were implemented at Goodenow Grove Nature Preserve, Raccoon Grove Nature Preserve and Monee Reservoir. Initial, semi-structured interviews with users were conducted on-site. Participants were chosen randomly and asked a series of openended questions concerning the quality of their experience at the preserves. Responses to the semi-structured interviews were compiled and analyzed to identify themes important to users at District sites. These responses and identified themes were then used to construct survey questionnaires (see **Exhibit 2** for the survey instruments and results). Another round(s) of semi-structured interviews may be conducted during and post-construction.

While a certain random element was necessary to minimize the sampling bias, seasonal and weekend/week day components were necessary to accurately capture use at District sites. Thus each month one weekend and two week days were sampled. The specific days sampled each month were chosen randomly. A weather threshold was established to avoid biasing the sample due to extreme inclement weather. When extreme inclement weather arose, no sampling was done on that day, but on the next subsequent weekend/week day possible.

Data collection spanned a 12-month period, from June 2004 through May 2005. Dates of data collection are shown in **Table A-1**. A total of 36 days were sampled (12 weekend and 24 week days). Exit interviewers were stationed at all three preserves on all 36 days sampled. Face-to-face interviews were conducted with visitors as they left each preserve. Only adults (age 18 or older) were interviewed. In cases with youth groups (school groups, Boy Scouts, Girl Scouts, etc.) only the group leader was interviewed. Adults in groups were interviewed individually, unless respondents selected one as a proxy. Usually every visitor was approached and requested to complete the survey, however on a few especially busy days at Goodenow Grove and Monee Reservoir, every other visitor was interviewed. Data were weighted in the analysis to correct for such adjustments.

In all, interviews were attempted with 2,310 visitors. Of these, 2,014 completed the survey, representing an 87% response rate. Response rates at all three preserves were relatively consistent (from 85% at Goodenow Grove to 89% at Monee Reservoir). For visitors who refused to be surveyed, interviewers recorded the visitor's gender, approximate age, and whether or not they were alone or part of a group. A comparison of respondents versus refusers showed no meaningful demographic differences among these measures.

The survey focused on the amount of time spent at the preserve, activities, and satisfaction with the physical and environmental conditions at the preserve. Visitors were asked to use a scale of 0-10 in response to a series of questions to rate their satisfaction, with "0" being completely unsatisfied and "10" being completely satisfied. Anyone rating their satisfaction "8" or lower were asked to what they attribute their concerns. Respondents were told that the purpose of the research was to solicit their opinions regarding the FPDWC facility and their experiences at the site. IDOT was not identified as the survey sponsor.

RESULTS

In order to understand the areas from which each preserve draws its visitors, respondents provided their home zip codes. These zip codes were grouped into seven regions for analysis (see **Table A-2**). The majority of visitors to these three preserves come from the immediate local area (41%) and the South Suburbs (34%).

Visitors report strong satisfaction with the environmental and physical conditions at the three preserves (**Exhibit 3**). Average ratings were consistently above 8.5 overall (very positive). Water quality received the lowest scores overall (8.6 on average), primarily from Raccoon Grove visitors (very few cases, most of whom commented on the marsh behind the Preserve) and Monee Reservoir visitors, who tend to attribute their concerns to the muddy/murky condition of the reservoir in general (36%), the amount of algae (34%) or weeds/lily pads (17%). Far fewer cite human impact such as litter/pollution (6%) or the usage of chemicals/weed killer (6%). The few who gave relatively low scores for noise levels (most likely Raccoon Grove visitors) usually cite local road traffic (32%), nearby trains (31%) or other visitors (31%). Only 2% cite excessive noise from air traffic (planes, helicopters).

Those visitors less than "very satisfied" (scores of "8" or lower) with their overall FPDWC experience tend to cite fishing and boating conditions (Monee Reservoir), weather conditions (Goodenow Grove), excessive populations of geese/ducks (Monee Reservoir) and bugs (Goodenow Grove and Raccoon Grove), and issues with the facilities (Raccoon Grove is considered too small and lacking improvements; Goodenow Grove is considered too crowded at times and lacking in recreational improvements for children). Virtually no one reported issues with road traffic (5 cases out of 667) or air traffic (no responses). **Table A-3** shows the sources of lower satisfaction among all sites and for each preserve.

Wildlife Populations

Two out of three visitors reported seeing some type of wildlife during their visit. Of these about one in four (24%) believe that wildlife populations are increasing, while just 4% believe they are decreasing, usually due to natural causes and increased growth and

development in general. Very few attribute declining wildlife populations to increased road traffic. Most visitors to Monee Reservoir (73%) and Goodenow Grove (54%) reported seeing some form of wildlife. However, no more than 8% of visitors at any preserve who saw wildlife believe that these populations are decreasing. **Exhibit 4** shows visitor responses concerning wildlife.

Perceived Usage

One out of four visitors believe that the preserve they visited is under-used, especially those at Raccoon Grove (42%) and Goodenow Grove (41%). Only 17% of those at Monee Reservoir feel this way. Those expressing this opinion tend not to be concerned about any apparent under-usage (84% overall – relatively consistent by preserve). Only 5% feel the level of usage at the preserve they visited that day was excessive. This response came mostly at Monee reservoir (6%), compared to no more than 2% at the other two preserves. About half of these relatively few respondents were concerned about the high number of visitors. Visitor responses concerning perceived usage are shown in **Exhibit 5**.

Activities

Among those visiting the three preserves, the most frequent activities reported during these visits were:

- Fishing 40% of visitors, virtually all at Monee Reservoir
- Walking/hiking 28% of visitors, especially at Goodenow Grove and Raccoon Grove
- Picnics 12% of visitors, especially at Goodenow Grove and Monee Reservoir
- Relaxing/reading/napping 11% of visitors, consistent across all three preserves
- Walking pets 9% of visitors, mostly at Goodenow Grove
- Boating 7% of visitors, all at Monee Reservoir
- Attending FPDWC event/program 7% of visitors, virtually all at Monee Reservoir
- Nature watching 5% of visitors, consistent across all three preserves
- Sledding 5% of visitors, primarily at Goodenow Grove
- All other activities (visiting nature centers, bird watching, biking, cross-country skiing) were mentioned by fewer than 5% overall (1-3% each)

Comparing the most frequent activities by preserve (over the entire 12-month period) half of the Goodenow Grove visitors went there to walk/hike the trails (50%), and one in five to walk their pets (21%). Year-round, 15% picnic and 13% go sledding at this preserve. The only activity reported with any frequency at Raccoon Grove was walking/hiking (56% of visitors). About one in 10 walk their pets (9%) or simply relax/read/nap (13%). Most Monee Reservoir visitors reported fishing (56%), with another 19% going there to walk/hike the trails, and one in 10 either picnicking (10%) or relaxing (11%). **Exhibit 6** shows the most frequent activities overall and at each preserve for all visitors.

Demographic Profiles

Among Goodenow Grove visitors (see **Table A-4**) those most likely to walk the trails with or without their pets tend to live in the local vicinity, though a significant number come from the South Suburbs. Only 3% live elsewhere in Will County. Sledding is most likely

to draw visitors from the South Suburbs (35%), with as many of these visitors coming from the immediate area. One in five comes from Indiana. This activity also tends to draw younger visitors (compared to other activities). Women are more likely to go to Goodenow Grove to picnic or to relax/read. Men are more likely to go there for sledding.

Most Raccoon Grove visitors (see **Table A-5**) go there to walk around the preserve (57% of visitors). These visitors are most likely to live in the immediate area or come from the South Suburbs. Four out of five visitors (81%) are men.

Visitors to Monee Reservoir (see **Table A-6**) go there either to fish or hike along the trails. Fishing draws more visitors from the South Suburbs (43%) than from the immediate area (30%), with 11% coming from Chicago. Few come from elsewhere in Will County. Similarly, those who go boating (without fishing) also tend to come from the South Suburbs. Both of these activities predominantly include men. The other activities (walking/hiking, relaxing, picnicking, etc.) are more often reported by local residents, and by women.

Summary of User Satisfaction

Overall, visitors expressed strong satisfaction with the three FPDWC sites. Those who were less satisfied most often attributed their experience to environmental causes outside of human control (e.g. weather). Very few visitors mentioned road traffic or air traffic as a concern or reason for lower satisfaction. Only two respondents volunteered concerns about the proposed South Suburban Airport and its potential impact on the preserves. Visitors to all preserves came predominantly from the local area (Beecher, Crete, Monee, Peotone and University Park/Park Forest) and the South Suburbs (Chicago suburbs south of the Eisenhower Expressway, with most respondents coming from Chicago Heights, Matteson, Steger and Richton Park).

Total Visitors and Projected Use

The total number of vehicles and people who visited each of the three FPDWC facilities during the 36 randomly-selected days of data collection were tallied and analyzed. These numbers represent a census of every person and vehicle that entered each facility, regardless of whether or not they were asked to be interviewed. Excluded from these data are those who entered the facility on official business, including FPDWC staff and contractors, local and county police/sheriff and Earth Tech and RDR staff. These data also distinguish between those who are considered visitors, meaning that they used the facility for at least five minutes, and "turnaround" non-visitors who entered and almost immediately left the facility (e.g. those who used rest room facilities and left, entered the site simply to make a U-turn, purchased something at the snack bar and left, etc.).

Virtually all visitors (at least 95%) arrive by car at each preserve. Those driving to Goodenow Grove average 3.5 people per vehicle, which is higher than the average number of vehicular occupants at Monee Reservoir (2.0) or Raccoon Grove (1.6). Raccoon Grove has more "turnaround" users (non-visitors) than those who actually stay and utilize the preserve (visitors). Fifty-six percent of the people who enter Raccoon Grove leave immediately or within five minutes, compared to 11% of those entering either Goodenow Grove or Monee Reservoir. Goodenow Grove has the highest

proportion of children (41% of all visitors), compared to Monee Reservoir (24%) and Raccoon Grove (14%).

Actual visitor counts from the entire sampling period were increased by a factor of 10 to calculate the projected total number of visitors annually at each site. This 360-day projection takes into account major holidays (Christmas, Thanksgiving, New Year's, Easter, etc.) when visiting is at a minimum or when facilities are closed. Based on these calculations the projected number of total entrants (visitors and "turnaround" non-visitors) per year at Goodenow Grove is 28,170, at Raccoon Grove is 8,090, and at Monee Reservoir is 53,780. **Tables A-7** – **A-15** detail sampled and projected visitor data for each of the three preserves.

TERRESTRIAL MONITORING

AMPHIBIAN AND REPTILE MONITORING

Amphibian sampling was conducted in 2004. The purpose of the sampling was to locate common species and was not considered to be a full inventory. The combined suite of sampling methods noted most types of amphibians present, but not every habitat type present in each preserve was monitored. Some species likely occur elsewhere within the study sites, but are not normally present in the specific locations sampled. The combined suite of methods provides a species list for each specific sample location. Individual methods quantify abundance at those locations. While the study was designed to sample amphibians in and near important breeding sites, incidental reptile captures were also noted. Because most field work took place in the spring and in the vicinity of wetlands, the amphibian list is probably more thorough than the one for reptiles.

Studies centered on known or suspected amphibian breeding wetlands at Goodenow Grove, Raccoon Grove and Monee Reservoir. Woodland and grassland sites were chosen; these are described below. All Exhibits referenced in this section are contained in **Appendix B**. Sites were chosen based on existing knowledge, review of remote sensing data, consultation with Forest Preserve District staff and field reconnaissance.

The Goodenow Grove Woodland site is located in the central portion of the preserve, just north of a parking lot and picnic areas (see **Exhibit 7**). A loop trail bisects an elongate pond; oak woodland and flatwoods around the east half of the pond comprise the study site. This location was also sampled for a short time in 1991 (Mierzwa et al., 1991).

The Goodenow Grove Grassland site is set among a series of ephemeral wetlands in successional fields along Illinois Route 394 (see **Exhibit 7**). The location approximates the one sampled in 1990-91 (Mierzwa et al., 1991).

The Raccoon Grove study plots are in the southeast part of the preserve, centered on the only known palustrine wetland with breeding amphibians within the boundaries (see **Exhibit 8**). This same wetland was sampled in 1994 (TAMS, 1995).

The Monee Reservoir site was sampled in a restored prairie opening north of the parking lot entrance (see **Exhibit 9**). This area is bordered by Ridgeland Avenue on the west and by a ponded section of an un-named tributary flowing into Monee Reservoir (associated with beaver impoundments) on the north and east.

Methods

Methods are modified versions of those described in Heyer et al. (1994), and included drift fences, cover board arrays, frog calls noted during diurnal surveys, larval sampling and visual encounter surveys.

Drift Fences

Drift fences are especially effective for capturing animals that are nocturnal or that are surface active only under very specific weather conditions. The results are easily

quantified as catch per trap night. They are labor intensive to install, and may not capture some larger or more agile species.

At each study wetland a drift fence array was installed 15-meters from the normal early spring wetland edge. The center point of each array was located on a randomly determined compass bearing from the wetland center. One 30-meter long array was installed at each wetland. These were constructed from aluminum flashing embedded several centimeters into the ground, forming a barrier to migrating amphibians. Two pitfall traps were placed at the center point of each array, one on each side of the fence; pairs of funnel traps were located at each end.

Drift fences were opened on April 5, after the onset of amphibian surface activity, and monitored for approximately 45 days. Drift fences were checked every day except when freezing conditions precluded any possibility of movement. Animals were identified and immediately released. Representative examples were photographed for documentation.

Cover Board Arrays

Cover boards have long been used for qualitative amphibian and reptile surveys, and in a few cases the method has been modified to allow quantitative measurements (Fitch, 1992). Cover boards can be an effective means of locating some secretive species, especially certain types of small snakes.

Trapping webs are a specialized application of point transect theory. Point-center distance sampling is often used to monitor visually conspicuous animals such as birds, primates or lizards (Buckland et al., 1993). It has been adapted in the past for use with live-trap sampling of small mammals (Anderson et al., 1983) and pitfall-trap sampling of shrews (Mierzwa, 2002). The current study may be the first use of cover boards with this variant cover board array design.

The web design for the proposed study consisted of eight lines laid out on compass bearings and radiating out from a randomly located center point, with eight cover boards equally spaced along each line, for a total of 64 cover boards per sample site.

Squares of plywood 12 inches by 12 inches (30.5 cm x 30.5 cm) were placed in a standard pattern, with one edge of the array close to the wetland margin. Each cover board was marked with an identifying letter and number combination. The cover board spacing was initially based on estimated short-term movements of animals from the available literature. If numerous animals migrated completely through the web, this could violate one of the assumptions of the method. However, web size is limited by the extent of unbroken habitat at some of the preserves. In an attempt to balance these considerations, spacing between cover boards on each line was three-meters, resulting in a total trapping web radius of 24 meters. This encompassed estimated short-term movements of the majority of the species present while allowing placement within preserve boundaries. Under ideal circumstances a five-meter spacing may have been used; however such a design would have been too large for use at two of the sample sites because of the proximity of roads and trails.

Center points of each web were 25 meters distant from the approximate high-water wetland margin, and on a random compass bearing from the wetland center. Cover boards were checked every day concurrent with drift fence monitoring in April and early

May. Since animals were able to arrive at or depart from cover boards at any time, there was no apparent risk of sampling-related mortality. Animals encountered were measured and photographed to facilitate identification of recaptures.

The advantage of a trapping web design is the ability to calculate density, given a sufficient sample size (Anderson et al., 1983). However, the method remains experimental and untested in the current context. Successful application assumes that all animals present near the center of the web, where cover board density is highest, will be captured; however excessive numbers of recaptures can lead to an overestimate of density.

If density estimation proves to be problematic, then conventional measures of abundance associated with cover board studies (catch per unit effort) may be utilized instead. The success of the method is in the process of being evaluated.

Frog Call Surveys

Frog call surveys are efficient, in the sense that they require only three brief visits to each wetland, utilize no equipment, and do not require capturing animals. Results can be described using call indices, although this is subjective to some extent and can vary among different observers. Thus frog call surveys are a rough measure of relative abundance, with call intensity subject to seasonal timing and specific weather conditions. They are however a very practical method of documenting species presence, including uncommon species difficult to document with other methods.

The initial intent was to use the standard Chicago Wilderness frog call survey protocol, with three nocturnal visits to each wetland. However, nocturnal access to some sample sites remote from roads proved to be problematic. As a result, it was decided to simply note frog calls heard during diurnal visits.

Larval Sampling

Each wetland was sampled once for larvae in mid to late May. Three minnow traps were placed within each wetland sampled, attempting to include a range of habitat type (open water, emergent vegetation and submerged vegetation). Traps were checked each day for three consecutive days. Captured larvae were identified to either genus or species, whichever was practical given growth stage and identifying characteristics

Visual Encounter Surveys

Visual encounter surveys involve systematic scrutiny of terrestrial and wetland habitat, including turning and replacing cover objects, such as fallen logs. These surveys can be conducted in various ways, including time-constrained or area-constrained searches. Although not a specific quantitative element of the present study, incidental observations made while walking to or from sites would fall into this category.

Results

Drift fence captures were noted as captures per trap-night, with a trap night equal to a 24-hour period for each 15-meters of array (the standard length of each roll of aluminum flashing). Trapping web surveys utilizing cover boards may be expressed as density for

species with sufficient sample size, or as captures per trap night with one board for each 24-hour period representing a trap night. Larval survey results include a species list and captures per trap-night for each species or genus. Frog call survey results are expressed as simple presence-absence with qualitative notes on call intensity when appropriate.

Potentially comparable datasets include 1990-1991 drift fence monitoring at two Goodenow Grove locations and a few sites on private land (Mierzwa et al., 1991), 1994 drift fence monitoring at Raccoon Grove (TAMS, 1995), drift fence and time-constrained visual encounter survey data from Thorn Creek Woods and Lower Plum Preserve (Nuzzo and Mierzwa, 2000) and various studies conducted or contracted by the Forest Preserve District of Will County (Mauger, pers. comm.). Additional studies are available but usually have not been quantified in a comparable way.

A total of 12 species, seven amphibians and five reptiles, were captured or observed at the combined study sites (see **Tables B-1** – **B-4** in **Appendix B**). The highest species richness was at Goodenow Grove Woodland, with a total of nine species. The remaining sites had five to six species each.

Amphibian movement into ponds took place during a series of rainfall events in mid and late March. Evidence of successful breeding was plentiful; egg masses of at least four amphibian species were observed at various locations. April was unusually dry, with only one rainfall event from April 5 through 16, and with relatively little of that precipitation falling in Will County. As a result, amphibians were unable to leave the immediate vicinity of ponds, or able to move only short distances, for a prolonged period of time. This would have strongly influenced amphibian capture results during the early part of the 2004 study period.

The two woodland sites had, not surprisingly, the greatest abundance of amphibians. At the grassland sites, reptiles dominated in either species richness (Goodenow Grove) or abundance (Monee Reservoir).

Drift fences proved to be the most efficient sampling method at three of the four sample locations, accounting for nine of the 13 species captured and 74.7% of all observations. At one site, Monee Reservoir, cover boards were slightly more effective than drift fences, but this site had a relatively low number of captures.

Cover boards did not add any species beyond those captured or observed by other methods, although they were fairly effective at capturing small snakes. Qualitative methods (frog call, larval and egg mass surveys) did add additional species; Eastern tiger salamanders (*Ambystoma tigrinum*) were noted only as larvae at two sites and Spotted salamanders (*Ambystoma maculatum*) were documented only through egg masses at one location.

Findings at the four sample sites are described below. Note that dry conditions in most of the spring of 2004 certainly affected the ability of amphibians to move on the surface.

Goodenow Grove. The majority of amphibians known to occur on the entire site were documented at one or both sample locations. The species known to occur within the preserve but not noted in 2004 generally occur in habitats other than the ones sampled, or are active later in the season. For example, Green frogs (*Rana clamitans*) are most

common in streams or permanent ponds, and Gray treefrogs (*Hyla versicolor*) breed in May.

Goodenow Grove Woodland. With nine species and 85 individuals documented, this was the richest site of the four sampled. Spring peepers (*Pseudacris crucifer*) were by far the most abundant species at this site, making up more than 62% of all captures. Common garter snakes (*Thamnophis sirtalis*) were also relatively abundant (12.9%), especially for a woodland site. Other species captured in smaller numbers included Blue-spotted salamanders (*Ambystoma laterale*, 10.6%), Western chorus frogs (*Pseudacris triseriata*, 4.7%), and Brown snakes (*Storeria dekayi*, 3.5%). Four additional species: Northern leopard frog (*Rana pipiens*), Bullfrog (*Rana catesbeiana*), Spotted salamander (*Ambystoma maculatum*), and Tiger salamander (*Ambystoma tigrinum*) were present but detected mostly through qualitative means. Northern leopard frogs were heard calling on several occasions and observed more than once, but the other three species were apparently relatively uncommon at this location.

Goodenow Grove Grassland. Six species and 25 individuals were recorded for this location. Western chorus frogs were the most abundant species (44.0%). Smooth green snakes (*Liochlorophis vernalis*) made up 20.0% of captures. Other species were represented by one or two individuals: Spring Peeper, Kirtland's snake (*Clonophis kirtlandii*), Brown snake and Common garter snake. The presence of the Illinois State Threatened Kirtland's snake is noteworthy. At least three other species of snake: Western fox snake (*Elaphe vulpine*), Plains garter snake (*Thamnophis radix*) and Massasauga (*Sistrurus catenatus*) have been reported in other portions of this grassland complex, well to the west and south but never at this precise location.

Raccoon Grove. Six species and 52 individuals were noted at Raccoon Grove. Most of the captures (73.1%) were of Western chorus frogs. Three species previously reported at Raccoon Grove were not observed there in 2004. American toads (*Bufo americanus*) were moderately common here in 1994 but were infrequently encountered at most Will County sites visited in 2004. Green frogs are typically associated with permanent water and would be expected to occur at the semi-permanent sample site only sporadically; and the Blanding's Turtle (*Emydoidea blandingii*) is known from a single 1994 observation.

Monee Reservoir. This site differed from the others sampled in that half of the species, and most of the individuals observed, were snakes. Only three amphibian species, American toads, Western chorus frogs and bullfrogs, were noted. Brown snakes, Plains garter snakes and Common garter snakes were all relatively common. No previous quantitative monitoring is available for Monee Reservoir. A few additional species are thought to occur within the preserve. Dave Mauger (pers. comm.) photo documented a Plains leopard frog (*Rana blairi*) somewhere within the preserve boundary. There have also been reports of Western fox snakes and Northern water snakes (*Nerodia sipedon*) from on-site staff. Although these reports are undocumented, suitable habitat is present. The presence of a few other relatively widespread species is also possible.

AVIAN MONITORING

Methods

Avian communities in Goodenow Grove, Raccoon Grove and Monee Reservoir were monitored from April – June 2004 in order to capture the majority of breeding residents and migrants. Monitoring consisted of three separate sampling events at each preserve from April – June. Each sampling event consisted of two days of monitoring by two field ecologists. The dates of sampling were April 7 and 12, May 17 and 19, and June 7 and 18, 2004.

Methods were designed to be consistent with the Critical Trends Assessment Program (CTAP) (Niven et al., 2002) bird monitoring protocols developed by the IDNR and utilized by the Illinois Natural History Survey (INHS, Niven et al., 2002). These methods are thoroughly tested and will allow comparability of results to other published studies.

The number of bird monitoring plots in any habitat patch was dependent on the size of the patch. Plots were set up prior to sampling and were used for all avian sampling. (These same plots were also used for vegetation monitoring so that avian data and vegetation data overlap spatially.) The center point was permanently marked, using GPS and a 24" length of ½" rebar pounded into the ground and labeled with a stamped metal tag.

Bird monitoring plots (50-meter radius) were placed along transects at 150-meter intervals in forested habitat or 300-meter intervals in grasslands and wetlands. The distance between transects equaled the distance between plots along a transect. The 50-meter plot radius was flagged at four locations corresponding to compass directions north, south, east and west. Sample transects and plots in Goodenow Grove Nature Preserve, Raccoon Grove Nature Preserve and Monee Reservoir are shown in **Exhibits 10 – 12** in **Appendix C**.

Sampling began at the first monitoring plot (usually the center point) within a half hour of sunrise. Sampling continued until late morning, depending on weather. Because bird activity can drop off dramatically as the day progresses, the last point count was completed no later than $4 - 4 \frac{1}{2}$ hours after sunrise.

Fixed radius point counts were conducted for a total of ten minutes with the three, five, six, eight and ten-minute marks identified for purposes of comparison with other data sets. Numbers of individuals seen or heard within the plot radius were recorded by species. In wetlands, a 20-minute tape of ten wetland-dependent species was played following the ten-minute point count. The call of each species was played for one minute, followed by one minute of silence. Any species that responded were recorded. The calls of the following species were included on the tape: Black Rail, Sora Rail, Virginia Rail, King Rail, Least Bittern, American Bittern, Pied-billed Grebe, Common Moorhen, American Coot and Common Snipe.

All species observed, including incidental (off-transect) observations, were noted and recorded. However only species observed within the monitoring parameters (within the 50-meter sample plots and 10-minute point count intervals) were subjected to further analysis.

When applicable, bird species were classified as Area Sensitive Species (ASSp) or Habitat Dependent Species according to CTAP avian protocols, as Federal or State Threatened or Endangered Species, or as Neotropical Migrants. A species' area sensitivity (classified as high, moderate or low) refers to the tolerance of that species to habitat fragmentation. For example, if a species is highly area sensitive then it will require large tracts of habitat for nesting. Habitat Dependent Species are those that can only be found in a particular habitat, i.e. grassland dependent species are those found primarily in grasslands.

Density measures were calculated from point count data for each species and each classification of species by dividing the total for each category by the area of the sample plot (50-meter radius = $7,854 \text{ m}^2$). It was not possible to run an analysis of variance (ANOVA) with the number of samples collected during the Baseline Study.

Results

All tables and Exhibits referenced in this section are contained in **Appendix C**. Over the course of monitoring 111 species and 2,015 individuals were identified, including incidental observations. A master species list is presented in **Table C-1**.

Point count surveys (on-transect monitoring within sample parameters) identified 1,097 individuals representing 86 species and 12 taxonomic Orders. This included 33 Area Sensitive Species, 45 Habitat Dependent Species and 33 species of Neotropical Migrants. **Table C-2** details the species observed during point count surveys.

For each habitat, preserve and habitat-within-a-preserve the total number of species, Area Sensitive Species (high, moderate and low), Habitat Dependent Species (forest, grassland and wetland) and Neotropical Migrant species was tallied (see **Table C-3**). Results indicate that wetland habitats had the highest diversity, with wetland habitats at Monee Reservoir having the greatest diversity among the three preserves. Forest dependent species overall, and most were observed in forested habitat at Goodenow Grove or Raccoon Grove Nature Preserves. The highest numbers of neotropical migrant species were found in forested habitat in Goodenow Grove and in wetland habitat in Monee Reservoir.

No threatened or endangered species were observed during point count surveys however one Illinois State Endangered Species, the Northern Harrier (*Circus cyaneus*), was incidentally observed in Goodenow Grove Nature Preserve on April 7, 2004, in the grassland community near monitoring site GA-3 (See **Exhibit 10**).

Density was calculated for each monitoring plot and the mean was used to calculate density for each preserve (see **Table C-4**). Results indicate that Monee Reservoir had the highest overall density with an average of 5.4×10^{-3} birds/m² and 2.0×10^{-3} species/m². Densities were also calculated for each habitat and habitat-within-a-preserve. These results are shown on **Table C-5** and indicate that wetland habitats had the highest densities overall with an average of 6.9×10^{-3} birds/m² and 2.4×10^{-3} species/m².

VEGETATION MONITORING

Methods

Vegetation monitoring was conducted on nine days between June 3 and September 8, 2004, in Goodenow Grove Nature Preserve, Raccoon Grove Nature Preserve and Monee Reservoir. This component of the study emphasized structural habitat variables and is intended to provide context that will facilitate analysis of any trends in animal abundance.

Analysis of the vegetation data followed the CTAP protocols for data analysis for all strata; by quadrat; and by each stratum using the Floristic Quality Assessment (FQA) methodology (Swink and Wilhelm, 1984). The FQA evaluates vegetation at a given site based on a value assigned to each species in the Chicagoland flora. This C value or 'Coefficient of Conservatism' ranges from 0-10. In the FQA system, C values of zero indicate species that are the least conservative and C values of ten, the most conservative.

Eighty-nine percent of native Chicago species have a C value of four or higher and inhabit specialized communities; the remaining 11% have a value of three or less, and are weedy species with no allegiance to any community (Swink and Wilhelm, 1984). The calculation of the collective values at a given site results in a mean C value, the mean C value along with the total number of species at the site are used to calculate the Floristic Quality Index (FQI) value. In general, a mean C value of at least 3.5 or an FQI of 35 or greater indicate that a site has natural area quality. Areas with a mean C of two or less or an FQI value of less than 20 are considered to have no natural quality.

Sampling Protocols

Bird-Plot Vegetation Protocols

The thirty non-CTAP vegetation plot centers overlaid bird plot centers (see **Exhibits 10 – 12** in **Appendix C**). Woody and herbaceous vegetation were sampled within each bird plot. Density and species composition of overstory trees, tree saplings and shrubs were determined, as well as percent cover by dominant herbaceous species. Size ranges by strata and percent cover classes followed the CTAP protocols described below.

At each bird-plot center, overstory trees were sampled using point-quarter methodology (Krebs, 1989). Compass directions were marked during establishment of the bird plots. Distance from plot center to the nearest tree in each quarter was recorded, along with species identification and diameter at breast height (dbh). Tree saplings less than five centimeters dbh and shrubs one-meter or greater in height were surveyed within a five-meter radius plot by tallying number of stems per species. Herbaceous species and woody species less than one-meter high were sampled one-meter from the center point in four one-square-meter quadrats (one per quarter), recording percent cover of 10% or greater.

CTAP-Plot Vegetation Protocols

Six plots in the center of distinct community types at each preserve, i.e. forest, wetland and grassland, were sampled intensively using CTAP vegetation sampling protocols (Carroll et al., 2002).

Establishing Plots

- Forest: Vegetation was sampled in three 50 x 10-meter plots along 50-meter transects that radiated from the bird plot center at randomly selected compass bearings (1° 360°), starting at a distance of 10 meters from the center point. No two transects were closer together than 53° to avoid overlap.
- Wetland: A 50-meter baseline was established parallel to the long dimension of the wetland along the side of the wetland that was most accessible. A 41-meter transect was run perpendicular to the baseline into the wetland at a randomly selected distance along the baseline. Transects were terminated when they reached open water with less than 30% plant cover or when the opposite end of the wetland was encountered.
- Grassland: A 50-meter baseline was established along the transect line that ran through the center of the bird plot. A 41-meter transect was run perpendicular to the baseline at a randomly selected distance along the baseline. To avoid bias the direction of the 41-meter transect right or left from the baseline was selected by a coin toss. If there was not a sufficient amount of habitat on the first transect to run the entire length, then another transect was run from a randomly selected point on the baseline and continued as before. Transects were at least eight meters apart and no closer than four meters from the edge of suitable habitat.
- If a transect ran through a patch of uncharacteristic habitat (garbage, excavations, unnatural soil mounds, etc.) it was relocated by choosing another random azimuth (forest) or random number on the baseline (wetland and grassland). Treefall gaps did not constitute uncharacteristic vegetation. If the transect crossed an interruption in vegetation, such as a stream or path, where more than one quadrat fell within the interruption, the transect was terminated on the closest edge of the interruption and resumed, at the same point along the transect, on the distal side of the path.
- CTAP diagrams depicting the layout of transects, plots and subplots are included at the beginning of Appendix D.

Site Documentation

At each CTAP plot the general characteristics of the area around the center point were documented as follows:

- General site characteristics: These included classifications of the vegetation community (based on the Illinois Natural Areas Inventory categories and CTAP classifications); additional plant species; brief notes about any obvious disturbances (within 60 meters of the center point); the general 'health' of the community, with comments on visible evidence of disease, insect damage, pollution drought, etc.
- Slope and Aspect: The average slope and aspect of the general area around each transect was recorded, measured in percent. Aspects were measured in

degrees and azimuths and were always taken facing downhill from the point where slope was measured.

- Photographs: Photos were taken from each plot's center point in the four cardinal directions. The number and direction of each photo was recorded on the respective data sheet for identification.
- GPS data and transect/plot markers: A global positioning system (GPS) was used to record the exact location of each baseline zero-point, transect zero-point and plot center.

Data Collection

The ground cover of vascular plants was estimated in one-quarter square-meter quadrats along each transect. All herbaceous and woody (<one-meter tall) species rooted inside the quadrat were recorded along with an estimate of cover for each species. To standardize cover estimates, a modified Daubermire method was used (Bailey and Poulton, 1968; Abrams and Hulbert, 1987). Cover classes used were A=<1%; B=1-5%; C=5-25%; D=25-50%; E=50-75%; F+75-95%; and G=95-100%. Additionally, percent cover estimates were reported for total vascular herbaceous cover, total woody cover (<one-meter tall), total vascular herbaceous and woody cover combined, bare ground, leaf litter and moss cover. Only plants rooted inside the quadrats were counted and, of those, only the portion of each plant that fell naturally within guadrat boundaries. Protocol for determining what vegetation to count came directly from CTAP: "In all cases, vegetation is only counted for individuals that are rooted in the guadrat, and vegetation will only be counted if it covers part of the guadrat while undisturbed. In other words, plants rooted in, but that are bent over so their cover is mostly outside the quadrat, will only be given a cover value based on the foliage that covers the quadrat where it lies naturally."

Forest ground cover was sampled in one-quarter square meter quadrats at an interval of every five meters along the transect, starting at the zero-meter point. A total of 10 quadrats were sampled per transect. Quadrats were placed one-meter from the transect on alternating sides, starting on the left at the zero-meter point.

Wetland and grassland ground cover was sampled in one-quarter square-meter quadrats at an interval of every two meters along the transect, starting two meters from the baseline. A total of 20 quadrats were sampled per site. Quadrats were placed onemeter from the transect on alternating sides, starting on the left at the two-meter point.

Woody plants and vines in the shrub layer were sampled in a subplot centered along each transect. Each stem less than five centimeters dbh and at least one meter tall and rooted in the subplot (counted at ground level) was recorded by species. At least half of the diameter of the stem had to be within the plot in order to be counted.

The forest shrub subplot measured 50 by 4 meters, extending two meters on each side of the transect. Stem counts for each 10-meter interval along the transect were kept separate as well as counts for the zero to one-meter and one to two-meter widths on either side of the transect.

The wetland and grassland shrub subplot total area was 41 by 4 meters, the same as the ground cover sample area. The plot was centered on the transect, extending out

two-meters on either side. Stem counts for the zero to one-meter and one to two-meter widths were kept separate.

Woody plants in the tree layer were sampled within the entire plot area. Stems were recorded by species and by one of nine dbh size classes in centimeters. Dbh classes used were A=5-9.9; B=10-14.9; C=15-19.9; D=20-24.9; E=25-29.9; F=30-39.9; G=40-49.9; H=50-59.9; and =/>60 centimeters. At least half of the diameter of the stem had to be within the plot in order to be counted. For each forest transect, the tree layer was sampled within a 50 by 10-meter plot centered along each transect. Stem counts in each 10-meter interval were kept separate. For wetland and grassland plots, the tree layer was sampled in a plot equal to the length of the baseline times the length of the longest transect, usually 50 by 41 meters.

A species list was generated by searching the entire plot area and recording every species encountered. Searching, collecting and identifying specimens was limited to 30 minutes. If conditions were unsuitable (i.e., inclement weather or darkness) this step was omitted. For forest plots, a 50 by 10-meter plot was centered on a transect, usually the third. For wetland and grassland plots, the plot was established equal to the length of the baseline times the length of the longest transect, usually 50 by 41 meters.

Results

All tables referenced in this section are contained in Appendix D. A total of 21 forest, nine grassland and six wetland plots were sampled for a total of 36 plots. Seven of those were CTAP plots (two forest, three grassland, two wetland). Two wetland plots, MB-1 at Monee Reservoir and CTAP plot RW-1 at Raccoon Grove were not sampled because of high water conditions throughout the growing season. Analysis of the vegetation data followed the CTAP protocols for data analysis for all strata; by quadrat; and by each stratum using the Floristic Quality Assessment (FQA) methodology (Swink and Wilhelm, 1984). Bird-plot FQA results are found in **Tables D-1.1 – 1.4**. CTAP plot FQA results are found in **Tables D-2.1 – 2.5**.

Dominant Species Percent Cover

The results for all plots by preserve and habitat are found in **Table D-3**.

Bird- Plot Vegetation Analysis

- Herbaceous cover: To determine the average percent cover for each species for each plot, cover values for each quadrat were totaled and divided by four.
- Shrub and sapling cover: To determine the average percent cover for each species for each plot, the total number of individuals per species was divided by the area to get a percent value.
- Trees: Overall tree density and species basal area (BA) were derived from the point-quarter data. Measuring from the center point in each plot quarter, the distance, dbh and species of the nearest tree was recorded. An average tree distance was derived by dividing the total of all distances measured, by four. This value reflects total tree density. The total basal area (BA) of each species was determined using the dbh value for each plot. The mean BA was calculated for each species by dividing the total BA by the number of trees for that species. This value was used to determine cover % values and dominant species for each plot (**Table D-3**).

CTAP Plot Vegetation Analysis

- Herbaceous cover: The total percent cover for each species was determined by combining the cover values for all quadrats; the average percent cover for the dominant species was determined by dividing total percent cover by the total number of quadrats – 30 quadrats per forest plot or 20 quadrats per grassland and wetland plot.
- Shrub and sapling cover: To determine the average percent cover for each species for each plot, the total number of individuals per species was divided by the area to get a percent value.
- Trees: The dbh of each tree was assigned to one of nine dbh value ranges. The total BA of each species was calculated using the average value in each range; the mean BA is determined by dividing the total value by the number of individuals.

Bird-Plot Vegetation Summary

The FQA results are summarized in **Table D-1.1** by transect and in **Table D-3** by plot. Comprehensive FQA reports by transect are found in **Appendix E.** Results for each preserve are discussed below.

Goodenow Grove

Two grassland and two forest transects were randomly selected in Goodenow Grove. Parallel grassland transects GA and GB are located in the open habitats in the northwest corner of the preserve, adjacent to I-394 on the north and west. Vegetation is dominated by grasses, sedges and forbs.

Transect GA

- Plot GA-1 is in a mesic/wet-mesic prairie habitat. Saw-tooth sunflower (*Helianthus grossesserratus*), followed by Red-rooted spike rush (*Eleocharis erythropoda*) and Tall goldenrod (*Solidago altissima*) are the dominant herbaceous species. Eastern cottonwood (*Populus deltoides*), Bur oak (*Quercus macrocarpa*) and Downy hawthorne (*Crataegus mollis*) comprise the tree layer and Sandbar willow (*Salix interior*) comprises the shrub layer.
- Plot GA-2 is in a wet-mesic prairie/sedge meadow habitat. Half of the quadrats had bare ground/leaf litter and indicators of inundation were observed. The adventive grass Redtop (*Agrostis alba*) occurs in every quadrat; Tall goldenrod is also dominant. Two sedge species found in the plot were not identified to species. Eastern cottonwood occurs in the tree layer.
- Plot GA-3 is in a mesic tallgrass prairie/sedge meadow habitat. This plot was sampled using CTAP methodology and is discussed below.

Transect GB

 Plot GB-1 is an old field/degraded mesic prairie habitat dominated by the introduced grasses Kentucky bluegrass (*Poa pratense*) and Redtop. Common blackberry (*Rubus allegheniensis*) averages 31.25% cover in the plot. The native prairie species Prairie sunflower (*Helianthus rigidus*), Mountain mint (*Pycnanthemum virginianum*) and Black-eyed susan (*Rudbekia hirta*) are each present in one quadrat. Eastern cottonwood occurs in the tree layer. Gray dogwood (*Cornus racemosa*) and Common blackberry are dominant in the shrub layer. The introduced species Autumn olive (*Elaeagnus umbellata*) and Multiflora rose (*Rosa multiflora*) are present in the shrub layer.

- Plot GB-2 is in an old-field/degraded mesic prairie habitat. Pale sedge (*Carex granularis*) and Tall goldenrod have the largest percent cover in the herbaceous layer. Cocksbur hawthorn (*Crataegus crus-galli*) is the only species in the tree layer. The introduced species, Autumn olive, is dominant in the shrub layer.
- Plot GB3 is in a marsh/sedge meadow habitat that is dominated by Tussock sedge (*Carex stricta*). All quadrats had 50% or more cover percentage of litter. The native wetland species Blue-joint grass (*Calamagrostis canadensis*) was present in one quadrat. Green ash (*Fraxinus pennsyvanica* var. *subintegerrima*) is dominant in the tree layer.

Transect GC is located just south of the grassland transects. It extends east/west through forested communities that include mesic upland forest and wet-mesic floodplain forest. There are three stream crossings. The overstory canopy is predominately Red oak (*Quercus rubra*) and White oak (*Quercus alba*). There were no introduced species found in any layer, in any plot. The shrub and sapling layer includes common forest understory species such as Ironwood (*Ostrya virginiana*), Bladdernut (*Staphylea trifolia*), Choke cherry (*Prunus virginiana*), and Black haw (*Viburnum prunifolium*). The disturbance-tolerant native forb Black snakeroot (*Sanicula gregaria*) is dominant in the herbaceous layer in every plot; other disturbance increasers such as White snakeroot (*Eupatorium rugosum*); Honewort (*Cryptotaenea canadensis*); and Enchanter's nightshade (*Circea lutetiana* var. *canadensis*) were also common.

- Plot GC-1 is a mesic forest plot at the west end of the GC transect. The plot is less than 50 meters south of a forest/grassland edge. The tree canopy is dominated by Red oak. Downy hawthorn and Common blackberry are dominant in the shrub layer. Black snakeroot and Honewort are the dominant ground cover; these forbs are considered indicators of past grazing disturbance.
- Plot GC-2 is a mesic upland forest habitat on a terrace edge above an adjacent wet-mesic floodplain forest habitat. White oak is dominant in the tree layer. Black cherry (*Prunus serotina*) was the only species in the shrub layer. The herbaceous layer was dominated by Black snakeroot (31.25%). Four other native forbs had an average percent cover of 18.75: Woodland knotweed (*Polygonum virginianum*), White snakeroot, Honewort and Enchanter's nightshade.
- Plot GC-3 is in mesic upland forest habitat on the west face of a steep slope. The overstory canopy is dominated by Red oak and the understory is predominately Ironwood. Tree density is the second highest on the GC transect (average tree distance 2.51-meters). The shrub and sapling layer is dominated by Ironwood and Bladdernut. Black snakeroot and Rue anemone (*Anemonella thalictroides*) are dominant in the herbaceous layer.
- Plot GC-4 is in a wet-mesic floodplain forest adjacent to the Plum Creek channel at the point of a meander bend. Trees are widely spaced (average tree distance 11.45 meters) and several large downed trees are scattered within the plot. Bur Oak (Quercus macrocarpa) is dominant in the tree layer and Bladdernut is

dominant in the shrub layer. Three common forbs comprise the largest percent cover (18.75% each) in the ground cover: Wild ginger (*Asaram canadensis*), Wood nettle (*Laportea canadensis*) and Black Snakeroot.

- Plot GC-5 is in a mesic upland forest habitat, but ends 20 meters east of a wetmesic floodplain forest edge. Tree density is the third highest (average tree distance 2.92 meters). Ironwood is the dominant species in the tree and shrub layer. Black Snakeroot is dominant in every quadrat of the herbaceous layer.
- Plot GC-6 is in a mesic upland forest habitat dominated by Red oak. There are large diameter White and Bur oaks adjacent to the plot. The plot itself is very shaded. Tree and shrub density is the highest of all plots. The tree average distance is 1.93-meters; total shrub count is 65 (82.8% cover). Black Haw is the dominant shrub (47 each, 60% cover) and Black snakeroot is dominant in the herbaceous layer.

Transect GD is located in a small, discontinuous forest unit northeast of the intersection of Goodenow Road and I-394. The dominant tree species are Red, White and Bur oak. The dense shrub layer, dominated by thorny species such as Wild gooseberry (*Ribes missouriense*), is an indicator of past grazing disturbance. None of the oak species that dominate in the overstory canopy are found in the shrub layer. Of all Goodenow Grove forest transects, this transect has the highest percentage of invasive shrubs, such as Arrowwood viburnum (*Viburnum dentatum*), Honeysuckle (*Lonicera* sp.) and Multiflora rose in the herbaceous and shrub layer. The invasive introduced forb, Garlic mustard (*Alliaria petiolata*), is present in the herbaceous layer.

- Plot GD-1 is in degraded mesic upland forest habitat. Green ash and White oak are dominant in the tree layer. Average tree distance is 3.53 meters. The dense shrub layer is comprised of nine species and dominated by the introduced Arrowwood shrub and Green ash saplings.
- Plot GD-2 is in degraded mesic upland forest habitat. White oak is dominant in the tree layer. Average tree distance was the highest in this plot (4.61 meters). There are 11 species in the dense shrub layer. The introduced Arrowwood is the dominant shrub species, followed by Downy hawthorn saplings and Common blackberry. Wild gooseberry and the introduced shrub Amur honeysuckle (*Lonicera maackii*) have the highest percent cover in the herbaceous layer.
- Plot GD-3 is in degraded mesic upland forest habitat. Bur oak is the dominant tree. This plot had the highest tree density; the average tree distance is 1.74 meter. The shrub layer is dominated by wild gooseberry. The herbaceous layer is composed of the common, prickly and unpalatable species that increase under grazing disturbance. The dominant species is White avens (*Geum canadense*) followed by Stickseed (*Hackelia virginiana*), Tall agrimony (*Agrimonia gryposepala*) and Enchanter's nightshade (*Circea lutetiana* var. *canadensis*).
- Plot GD-4 is in a degraded mesic upland forest. White oak is the dominant tree species. Average tree distance is 2.51 meter. Wild gooseberry is dominant in the shrub layer. The herbaceous layer is dominated by Amur honeysuckle. Other introduced species include Coralberry (*Symphoricarpos orbiculatus*) in the herbaceous layer and Multiflora rose in the shrub layer.

Raccoon Grove

Two parallel forest transects, RA and RB, cut north/south across the center of Raccoon Grove. The habitat is primarily mesic upland forest with some patches of wet-mesic upland forest, wet-mesic floodplain forest and northern flatwoods habitat. Both transects cross the Rock Creek channel.

Transect RA

- Plot RA-1 is in a mesic upland forest habitat with a mixed canopy of Oak species and Sugar maple (*Acer saccharum*) and an understory canopy of Ironwood trees. Average tree distance was 2.66 meters. Black cherry saplings are dominant in the shrub layer. There is a dense herbaceous layer dominated by Wild geranium (*Geranium maculatum*) and Black snakeroot, both common survivors of past grazing disturbance.
- Plot RA2 is a mesic upland forest habitat dominated by Sugar Maple in the tree and shrub layer. Average tree distance was 4.54 meters. Only two native forbs were found in the herbaceous sample; one quarter to three-quarters of each quadrat was unvegetated.
- Plot RA-3 is south of the Rock Creek channel on a low terrace, and is also adjacent to a private property boundary east of the plot. The habitat is wet-mesic floodplain forest. The tree layer is dominated by Ironwood and the average distance is 5.25 meters, the highest value of all Raccoon Grove plots. The shrub layer is dominated by Downy hawthorn. There is a dense herbaceous layer dominated by Wild ginger and May apple (*Podophyllum peltatum*). The introduced, invasive forb, Garlic mustard, was present in one quadrat.
- Plot RA-4 is in a mesic upland forest habitat with a sparse tree and shrub layer. Black walnut (*Juglans nigra*) had the largest basal area. Average tree distance was 3.58 meters which is the median value for the Raccoon Grove plots. There is a rich herbaceous layer consisting of 12 species of native forbs, sedges and vines. Wild geranium occurred in all plots and Nodding wild onion (*Allium cernuum*) in three. No invasive species were recorded.
- Plot RA-5 is located in a wet-mesic upland forest habitat that is dominated by Black haw and Shagbark hickory (*Carya ovata*) in the tree layer. Average tree distance is 3.06 meters. Three-quarters of the ground cover was bare ground/leaf litter. The herbaceous layer includes four forb species, one vine and one tree species. Multiflora rose occurs in the shrub layer.
- Plot RA-6 is in a northern flatwoods habitat dominated by Swamp white oak (*Quercus bicolor*) in the tree layer. The average tree distance is 2.86 meters. The shrub layer is dominated by Shagbark hickory and Downy hawthorn. Native grasses and sedges account for a quarter to half of the ground cover in three quadrats.
- Plot RA-7 is in a disturbed mesic upland forest habitat near a forest/prairie edge. This plot is dominated by young Green ash trees in the tree and shrub layer. The average tree distance is 4.39 meters. There is a high shrub density, including two invasive species, Common buckthorn (*Rhamnus cathartica*) and Multiflora

rose. The herbaceous layer is dominated by Honewort and Black snakeroot, forbs that are indicators of grazing disturbance.

Transect RB

- Plot RB-1 is located in a mesic forest habitat that is dominated by Basswood (*Tilia americana*) and Sugar maple in the tree layer and Sugar maple saplings in the shrub layer. The average tree distance is 2.80 meters. Three-quarters of the ground cover quadrats are unvegetated and one-quarter is sparsely vegetated by two native forbs.
- Plot RB-2 is in a mesic upland forest habitat with a Basswood/Sugar maple canopy and a sparse shrub layer. The average tree distance is 4.41 meters. Ground cover is comprised of eight native species and dominated by Wood nettle and Wild ginger. There were no introduced species recorded.
- Plot RB-3 is in a mesic upland forest habitat dominated by Shagbark hickory. Average tree distance is 2.18 meters, the lowest value of the Raccoon Grove plots. Downy hawthorn is the only species in the shrub layer. The dense ground cover is composed of six native forbs. Jack-in-the-pulpit (*Arisaema triphyllum*) is dominant.
- Plot RB-4 is in a wet-mesic upland forest habitat just east of a woodland pond. The tree layer is dominated by Green ash with an under story of Downy hawthorn. Average tree distance is 4.41 meters. Downy hawthorn is the only species in the shrub layer. Honewort is dominant in the herbaceous layer.

Monee Reservoir

The Monee Reservoir transects MA and MB run east/west across several habitat types including old-field, emergent, open water and forested wetland, and recreated prairie. Typical of areas recovering from agriculture and mining, vegetation is dominated by weedy native species and adventive species.

Transect MA runs east from Ridgeland Road near the northern boundary of the preserve.

- Plot MA-1 is located in old-field habitat at the top of a man-made hill created from excavation spoil. Vegetation is dominated by European meadow grasses. The four species recorded are all introduced species. Kentucky bluegrass is dominant throughout the plot along with White clover (*Trifolium repans*). There are no trees or shrubs in the plot.
- Plot MA-2 is located in an emergent wetland dominated by Reed canary grass (*Phalaris arundinacea*). A small portion of the plot includes an adjacent wooded wetland on the east. Box elder (*Acer negundo*) is the dominant tree and also occurs in the shrub layer with American current (*Ribes americanum*).

Transect MB runs east from Ridgeland Road and ends at the edge of open water in the northeast corner of the preserve.

- Plot MB-1 was located in a wooded wetland adjacent to a stream channel at the head of Transect MB. Due to high water levels during the 2004 growing season, no data were collected from this plot.
- Plot MB-2 is a mixture of wetland and old-field vegetation. Reed canary grass is dominant throughout. Half of the plot is has a thick cover of dead Reed canary grass stalks and leaves. Eastern cottonwood appears in the tree layer.
- Plot MB-3 is in the northeast corner of the preserve where a marsh/prairie community has been recreated. The graded slopes surrounding the marsh have been planted with a tall-grass prairie seed mix. Vegetation cover is sparse and uneven, and the species mixture is dominated by grasses. Charred grass tufts were observed showing where a prescribed burn had been conducted. Big bluestem (*Andropogon gerardii*) is the dominant species throughout the plot. The introduced, invasive, forb, White sweet clover (*Melitotus alba*) was also found in three-quarters of the plot.

CTAP Plot Vegetation Summary

Comprehensive FQA reports by plot are found in **Appendix E.**

Goodenow Grove

GC-2 Forest Plot

The plot is located in mesic forest habitat on an upland terrace just south of the forest/grassland edge to the north. Part of the wet mesic floodplain forest community to the south is included in the plot. The forest canopy in the vicinity of the plot is dominated by oaks.

Sampling took place on September 7, 2004. Three transects were laid out extending 86°ENE, 229° SSW, and 298° WNW from the center. A total of 54 species were recorded – 53 (98.1%) are native. White oak is the dominant tree in the overstory and Red oak is dominant in the shrub layer. The herbaceous stratum is dominated by Black Snakeroot (*Sanicula gregaria* FRQ23; RFRQ12.2), followed by Clearweed (*Pilea pumila* FRQ16;RFRQ8.5). One introduced shrub, Common Buckthorn (*Rhamnus cathartica*), was recorded in the tree plot on Transect 3.

GA-3 Grassland Plot

This plot is located in the mesic tallgrass prairie/sedge meadow complex found at the northwest corner of the preserve adjacent to I-394. The grassland plot is located toward the more mesic, eastern, end of the preserve, midway between the highway to the northwest and the upland forest to the south/southeast.

Sampling took place on August 31, 2004. The 50-meter baseline extends north and south. The 41-meter transect extends east from a sedge meadow habitat at the baseline, following a gentle gradient through wet-mesic and mesic prairie. The transect starts in a sedge meadow habitat and includes mesic, wet-mesic prairie and sedge meadow habitat. A total of 47 species were recorded – 40 (88%) are native. The plot is dominated by native perennial forbs (44.7%). Perennial native grasses and sedges make up nearly 15 percent (6.4% and 8.5% respectively). The most frequent species is Big bluestem (FRQ17; RFRQ17.9), followed by Daisy fleabane (FRQ12; RFRQ11.3) and Tall goldenrod (FRQ10; RFRQ9.4). There no occurrences of shrubs or trees in the plot.

GW-1 Wetland Plot

The wetland plot is located north of Goodenow Road and just east of a recreational trail. The community is a groundwater-fed, emergent wetland that extends north/south along the base of steep bluff in a wide strip, bordered on the west by a steep wooded slope and on the east by a thin band of woods and a lake. A spring run flows east from the bluff to the lake. CTAP sampling took place on September 1, 2004. The 50-meter baseline extends north and south along the base of the bluff and the 41-meter transects runs east from the bluff toward the lake to enable the sample to reflect the topographic and hydrologic gradient in the community.

A total of 59 species were recorded – 51 (90%) are native. The plot is dominated by native perennial forbs (47.5%), and perennial grasses (8.5%) and sedges (11.9%). In the herbaceous stratum, the most frequent species are Redtop (FRQ15; RFRQ 8.6) and Tall goldenrod (FRQ15; RFRQ 8.6). The dominant species in the shrub layer are Gray dogwood (FRQ4: RFRQ33.3) and Sandbar willow (*Salix interior* FRQ7;RFRQ33.3). A single occurrence of the introduced species, Autumn Olive was recorded in the shrub plot. The woody vegetation plot includes nine Downy Hawthorns trees.

Raccoon Grove

RA-4 Forest Plot:

Sampling took place on September 8, 2004. The plot is centrally located in the mesic upland forest habitat between Pauling Road to the north and the restored prairie habitat to the south. The plot is adjacent to a private property boundary. The area in vicinity of the plot is a multi-aged oak-hickory forest. Many oak snags were observed.

The three 50-meter transects were laid out extending 184°, 243° WSW, and 336°NNW from the center. A total of 53 species were recorded – 50 (94.3%) are native Red oak is the dominant tree. Multiflora rose and Shagbark hickory are the dominant species in the shrub layer. The herbaceous stratum is dominated by a native vine, Virginia creeper (*Parthenocissus quinquefolia* FRQ 28; RFRQ17.0), followed by Woodland knotweed (*Polygonum virginianum* FRQ17; RFRQ10.3). Two introduced species, Multiflora rose and Japanese barberry, occur in the shrub layer.

RG-1 Grassland Plot:

CTAP sampling took place on August 10, 2004. The grassland plot is located south of the mesic upland forest, in a restored prairie west of Egyptian Trail. The plot is located approximately midway between the forest edge to the west and the road to the east. The 50 meter plot baseline extends north and south and the 41 meter transect runs east from the baseline.

A total of 33 species were recorded – 27 (81.8%) are native. The plot is dominated by native perennial forbs (54.5%), and native perennial grasses (9.1%) and sedges (6.1%). In the herbaceous stratum, the most frequent species is Big bluestem (FR20; FRQ 12.5), which was recorded in every quadrat. The non-native Kentucky bluegrass was the next most frequent species (FRQ14;FRQ 8.8), followed by native forbs Heath aster (*Aster ericoides* FR13;RFRQ 8.6) and Early goldenrod (*Solidago juncea* FR12;RFRQ 7.5). The native shrub Gray dogwood was found in half of the herbaceous quadrats (FR10; RFRQ 6.3) and was the only shrub occurring in the shrub plot.

Monee Reservoir

MG-1 Grassland Plot

CTAP sampling took place on August 11, 2004. The grassland plot is located at the southern edge of the preserve just east of Ridgeland Road. This area is a tall-grass prairie recreation in a recovering agricultural field. The prairie slopes gently NE to SW. The 50-meter baseline was established running northeast/southwest; the 41-meter transect extends northwest. The baseline was established so that the transect would to be situated at an angle to avoid running parallel to a wide, shallow swale that runs through the plot.

A total of 40 species were recorded – 32 (80%) are native. The plot is dominated by native perennial forbs (55%), native perennial grasses (10%) and non-native forbs (15%). The most frequent species are Big bluestem (FR19; FRQ 14.4), Tall goldenrod (FR17; FRQ 12.9), White sweet clover (FR17; FRQ 12.9) and Yellow coneflower (FR12; RFRQ 9.1). Introduced species comprise 32% of the herbaceous cover: White sweet clover (FR17; RFRQ12.9) and Kentucky bluegrass (F8:RFRQ6.1) are most frequent. There were no woody species present in any layer.

AQUATIC MONITORING

FISH MONITORING

Methods

Fish samples were collected from historical stream sample sites on Plum Creek in Goodenow Grove (site PLM-02, see **Exhibit 7** in **Appendix B**) and on Rock Creek in Raccoon Grove (site RCK-02, see **Exhibit 8** in **Appendix B**). Samples were collected by field ecologists in June and July, 2004.

Streams were sampled using a six by 15-foot seine with 3/16-inch mesh. Sample reaches were 200 meters in length. Sampling began at the downstream end of each reach and moved upstream into the current. Any gravel riffles or debris piles were thoroughly kicked to dislodge fish. The emphasis was on gathering representative and comparable samples, not necessarily on capturing every fish or even every species.

Results

All tables referenced in this section are contained in **Appendix F**. The nature preserve samples were part of a much larger dataset gathered largely on private land throughout the airport site. Index of Biotic Integrity (IBI) results were calculated for each sample (Karr et al., 1986) to facilitate monitoring of biotic quality trends.

At Goodenow Grove, six species and 13 individuals were captured. Species richness and IBI results were down slightly from past sample events. At both sites, repeated spring high water events following a prolonged dry spell may have affected results. A summary of results is included in **Table F-1**.

At Raccoon Grove, four species and 34 individuals were captured, and IBI results declined considerably from previous samples (1994). Creek chub (*Semotilus atromaculatus*) and bluegill (*Lepomis macrochirus*) were by far the most common species. **Table F-1** presents a summary of these results.

Reduced richness and biotic quality in 2004 could be attributable to variable stream levels (prolonged drought punctuated by significant rainfall events), to upstream impacts on private land or to a combination of both.

BENTHIC MACROINVERTEBRATE MONITORING

Methods

Benthic macroinvertebrate samples were collected from historical stream sample sites on Plum Creek in Goodenow Grove (site PLM-04, see **Exhibit 7** in **Appendix B**) and on Rock Creek in Raccoon Grove (site RCK-02, see **Exhibit 8** in **Appendix B**). Samples were collected by field ecologists on June 22 and 28, 2004.

Quantitative macroinvertebrate samples were collected following methodology previously employed by Earth Tech ecologists using a Surber Sampler. The sampler consists of a square metal frame enclosing a known area (1.0 square feet), with a net trailing out from it, swept downstream by the current. To collect a sample, the frame was

placed firmly into the substrate, ensuring that there were no gaps. The substrate within the frame was then disturbed, such that all organisms within the sediment were dislodged and carried into the net by the current. Any rocks or vegetation within the frame were carefully scrubbed and examined for animal life. All organisms collected in each sample were preserved in 10 percent formalin and returned to the laboratory for later sorting and identification. Triplicate samples were collected at each stream station.

In the laboratory, each sample was washed through a U.S. Standard No. 30 sieve to remove fine sediment and the formalin. The sample was then placed in a white enamel pan, filled approximately one-third full of water. All organisms were removed from the sample and identified under stereo-microscope to the lowest practical taxon by an experienced aquatic biologist, using various keys and guides (e.g., Hilsenhoff, 1981; Page, 1985; Smith, 2001). For comparative purposes and quality control, the identified specimens are stored in a reference collection. Additionally, subsequent to complete sorting of sample, the remaining material was placed back into the labeled jar with 10 percent formalin, for possible future quality control checks.

The Macroinvertebrate Biotic Index (MBI) is similar to IBI in that it uses multiple metrics to assign a single numerical value to each sample (Hite and Bertrand, 1989). The method was developed in Illinois. Like IBI, it was utilized in early phases of airport studies, providing an historical dataset for the study area. The MBI provides a summation or average of tolerance values assigned to each taxon collected and is weighted by their abundance; low values indicate good water quality and high values degraded water quality. This index is on a 0 to 11 scale. According to Hite (1988), water quality of Illinois streams can be assessed by the following MBI values: less than 5.0 is excellent water quality; between 5.0 and 6.0 is very good; between 6.0 and 7.5 is fair-good; between 7.5 and 10.0 is poor; and greater than 10.0 is very poor water quality. MBI is calculated by the following equation:

$$MBI = \Sigma(n_i t_i) / N$$

Where n_i = the number of individuals in each taxon; t_i = the tolerance value of the taxon; and N = the total number of individuals.

Results

Plum Creek samples collected adjacent to Bemes Road in Goodenow Grove Nature Preserve (site PLM-04, see **Exhibit 7** in **Appendix B**) yielded four individuals from four taxa – one isopod (*Asellidae*), one mayfly (*Ephemerella*), one clam (*Sphaerium*) and one Caddisfly larva (Hydropsychidae). Samples collected from Rock Creek in Raccoon Grove Nature Preserve (site RCK-02, see **Exhibit 8** in **Appendix B**) yielded four individuals representing two taxa – two black fly larvae (*Simulidae*) and two Caddisfly larvae (Hydropsychidae). MBI was calculated for each sample location and resulted in values of 0.73 for Plum Creek and 1.89 for Rock Creek, both indicating excellent water quality. A summary of these results is presented in **Table G-1** in **Appendix G**.

It is important to point out that while MBI was calculated for these samples, and indicates excellent water quality, such low abundances and species richness (only four individuals and two or four taxa) cannot be used reliably for quantitative analysis. As a general rule sample sizes of less than 100 are not considered robust enough to subject to quantitative analysis. The MBI scores resulting from these samples should not,

therefore, be used as a basis for absolute conclusions about water quality in the sampled streams.

The nature preserve samples were part of a much larger dataset gathered largely on private land throughout the vicinity of the proposed airport. Previous data exist for comparison from samples collected on Rock Creek in Raccoon Grove in 1994. Those samples yielded 543 individuals representing 13 taxa, including three species of aquatic beetles, one species each of isopods and amphipods, five species of fly/midge larvae, three species of mayfly larvae, six different gastropod species, one species of roundworm, one species of damselfly, two species of earthworms, three species of bivalves and three species of caddisfly larvae. These results yielded an MBI score of 9.40, indicating poor water quality.

In comparison, 2004 samples yielded significantly lower macroinvertebrate abundance and richness than samples collected in 1994, but significantly better MBI scores. There are numerous possible explanations for this disparity. Benthic macroinvertebrate communities are patchy and dynamic, and are greatly influenced by the prevailing environmental conditions. That is precisely why they make good environmental indicators. It is possible that the low species richness and abundance are attributable to degradation of the water/habitat quality, changes in the aquatic or adjacent terrestrial habitat, or to specific meteorological conditions.

Recent years have been very dry, and the upper parts of some streams were dry for extended periods of time. Generally fish samples in upper Black Walnut Creek and upper Plum Creek, both of which dry out on a regular basis, were unusually low in richness. There is no analogous evidence from benthic macroinvertebrate samples, but similar conditions may have impacted results from 2004. Rock Creek in Raccoon Grove is an ephemeral stream in many years, and 2004 samples were collected soon after heavy rain, which also could have influenced results.

The biggest change in the streams around the airport site since sampling in the early to mid-1990s, qualitatively, is an increased amount of emergent and submerged aquatic vegetation. This is likely a function of some combination of increased or changed nutrient input and a reduction in sedimentation resulting from the onset of mandated no-till agricultural practices in the early to mid 1990s. This change affects species differently; some species suffer, some benefit. Since many of the sensitive species historically associated with vegetated streams are absent or very rare today, recolonization might be incomplete or take a very long time because of scattered source populations. While the heavily shaded portions of Plum Creek and Rock Creek sampled within the nature preserves do not have an abundance of aquatic vegetation, these streams are not part of a closed system – effects are possible from nearby open-canopy portions of the streams and movement/colonization among sites.

SUMMARY

Baseline conditions have been established for the number of users, types of uses, wildlife populations and vegetation communities. The following sections summarize findings of the various baseline surveys.

User/Use Surveys

Visitors reported strong satisfaction with the environmental and physical conditions at the three preserves. Two out of three visitors reported seeing some type of wildlife during their visit. One out of four visitors believes that the preserve they visited is underused. The most frequent activities reported were:

- Fishing, 40% of visitors
- Walking/hiking, 28% of visitors
- Picnics, 12% of visitors
- Relaxing/reading/napping, 11% of visitors

Amphibian and Reptile Monitoring

A total of 12 species, seven amphibians and five reptiles, were captured or observed at the combined study sites. The highest species richness was at Goodenow Grove Woodland, with a total of nine species. The remaining sites had five to six species each.

Avian Monitoring

Over the course of monitoring 111 species and 2,015 individuals were identified. Forest dependent species comprised the highest portion (approximately 56%) of habitat dependent species overall, and most were observed in forested habitat at Goodenow Grove or Raccoon Grove. The highest numbers of neotropical migrant species were found in forested habitat in Goodenow Grove and in wetland habitat in Monee Reservoir.

Vegetation Monitoring

A total of 21 forest, 12 grassland and one wetland plots were sampled for an overall total of 34 plots. Floodplain and mesic forest plots were dominated by native trees and shrubs, with minimal numbers of introduced or invasive species. Wetlands were dominated by native perennial forbs, with perennial grasses and sedges also noted. Mesic upland forest plots were dominated by native trees and shrubs in the understory. Grassland plots showed the lower percentages of native species, but were still dominated by native perennial forbs and grasses. Some of these grassland plots were in recovering agricultural fields.

Fish and Benthic Macroinvertebrate Monitoring

Fish and benthic macroinvertebrate samples were collected from historical stream sample sites and were part of a larger dataset gathered largely on private land throughout the vicinity of the airport. Fish species richness and biotic quality were down slightly from previous sampling events. Macroinvertebrate abundance and richness were also lower than previous samples. Low species richness and abundance in these samples precludes drawing any conclusions about water quality in the sampled streams.

LITERATURE CITED

Anderson, D. R., K. P. Burnham, G. C. White, and D. L. Otis. 1983. Density estimation of small-mammal populations using a trapping web and distance sampling methods. Ecology 64:674-680.

Buckland, S. T., D. R. Anderson, K. P. Burnham, and J. L. Laake. 1993. Distance Sampling: Estimating Abundance of Biological Populations. Chapman & Hall, London. xii + 445p.

Carroll, C. et al. 2002. Plant Sampling Protocols. In B. Molano-Flores (ed.) Critical Trends Assessment Program Monitoring Protocols. Illinois Nat. Hist. Surv., Office of the Chief, Technical Report 2002-2, Champaign, IL. 38 pp, + Figures, Tables, and Appendix.

Fitch, H. S. 1992. Methods of sampling snake populations and their relative success. Herpetological Review 23:17-19.

Heyer, W. R., M. A. Donnelly, R. W. McDiarmid, L. C. Hayek, and M. S. Foster. 1994. Measuring and Monitoring Biological Diversity: Standard Methods for Amphibians. Smithsonian Institution Press, Washington, D.C. 320p.

Hilsenhoff, W.L. 1981. Aquatic Insects of Wisconsin. Keys to Wisconsin genera and notes on biology, distribution and species. Natural. History Council, University of Wisconsin, Madison. 60pp.

Karr, J. R., K. D. Fausch, P. L. Angermeier, P. R. Yant, and I. J. Schlosser. 1986. Assessing biological integrity in running waters: A method and its rationale. Illinois Nat. Hist. Surv., Spec. Publ. 5. 28p.

Mauger, D. Personal communication, April 2000. Forest Preserve District of Will County.

Mierzwa, K. S. 2002. Unpublished study proposal to the Bureau of Land Management, Arcata CA Field Office.

Mierzwa, K. S., S. D. Culberson, K. S. King, and C. Ross. 1991. Illinois-Indiana Regional Airport Site Selection Report. Appendix E, Volume II. Technical Paper No. 7: Biotic Communities. TAMS Consultants, Inc. 312p. + appendices.

Niven, D. et al. 2002. Bird Sampling Protocols. In B. Molano-Flores (ed.) Critical Trends Assessment Program Monitoring Protocols. Illinois Nat. Hist. Surv., Office of the Chief, Technical Report 2002-2, Champaign, IL. 38 pp, + Figures, Tables, and Appendix.

Nuzzo, V. A., and K. S. Mierzwa. 2000. The effect of forest structure on amphibian abundance and diversity in the Chicago region. Unpublished report to the U.S. Environmental Protection Agency, Great Lakes National Program Office, Chicago. 36p.

Page, L.M. 1985. *The Crayfishes and Shrimps (Decapoda) of Illinois*. Illinois Nat. Hist. Surv. Champaign. Vol. 33, Art. 4.

Smith, D.G. Pennak's Freshwater Invertebrates of the United States: Porifera to Crustacea. 4th ed. John Wiley & Sons, Inc., New York. 2001.

TAMS Consultants, Inc. 1995. Preliminary Environmental Assessment, South Suburban Airport.

Appendix E: Floristic Quality Assessment Reports

Goodenow Grove Nature Preserve Bird Plots

Site:	Goodenow Grove, Will County, Illinois
Locale:	Goodenow GA Herbaceous Plot
Date:	June 9, 2004 two hours
Bv:	Earth Tech
File:	c:\FQA\studies\BaselineReport\Goodenow Transect A.tra

				TRAN	SECT DA	ATA, QUA	ADRAT			
QUAD	MC	W/Ad	FQI	W/Ad	MW	W/Ad	NS	TS	MW SEO	W/Ad
1	1.5	1.2	3.0	2.7	0.3	-0.4	4	5	0.3	-0.4
2	2.5	1.7	3.5	2.9	0.0	-1.0	2	3	0.0	-1.0
AVG	2.0	1.4	3.3	2.8	0.1	-0.7	3.0	4.0		
STD	0.7	0.3	0.4	0.1	0.2	0.4	1.4	1.4		

	С	NUMBER			5 NATIVE SPECIES	
	0	0			6 TOTAL SPECIES	
	1	2			2.0 NATIVE MEAN C	
	2	2 0 to	3		1.7 W/Adventives	
	3	0 80.	0%		4.5 NATIVE FQI	
	4	1			4.1 W/Adventives	
	5	0			-0.4 NATIVE MEAN W	
	6	0 4 to	7		-0.8 W/Adventives	
	7	0 20.	0%			
	8	0				
	9	0 8 to	10			
	10	00.	0%			
Native	5	83.3%	Adventive	1	16.7%	
Tree	0	0.0%	Tree	0	0.0%	
Shrub	0	0.0%	Shrub	0	0.0%	
W-Vine	0	0.0%	W-Vine	0	0.0%	
H-Vine	0	0.0%	H-Vine	0	0.0%	
P-Forb	4	66.7%	P-Forb	0	0.0%	
B-Forb	0	0.0%	B-Forb	0	0.0%	
A-Forb	0	0.0%	A-Forb	0	0.0%	
P-Grass	Ω	0 0%	P_Crace	1	1 (70	

	•	0.00	DICID	0	0,06	
A-Forb	0	0.0%	A-Forb	0	0.0%	
P-Grass	0	0.0%	P-Grass	1	16.7%	
A-Grass	0	0.0%	A-Grass	0	0.0%	
P-Sedge	1	16.7%	P-Sedge	0	0.0%	
A-Sedge	0	0.0%	A-Sedge	0	0.0%	
Cryptogam	0	0.0%				
	PHYSTOGN	IOMIC REL	ATTUE IMDODUANC		PO	

FRISLOGN	OMIC RELA	LIVE IM	PORTANCE	VALUES	
PHYSIOGNOMY	FRQ	COV	RFRQ	RCOV	RIV
Nt P-Forb	5	300	62.5	60.0	61.3
Ad P-Grass	2	125	25.0	25.0	25.0
Nt P-Sedge	1	75	12.5	15.0	13.8

SPECIES	RELAT	IVE IMPORT	ANCE VA	LUES				
SCIENTIFIC NAME	С	WETNESS	FRQ	COV	RFRO	RCOV	RIV	
Solidago altissima	1	FACU	2	150	22.2	27.3	24.7	
AGROSTIS ALBA	0	FACW	2	125	22.2	22.7	22.5	
Helianthus grosseserratus	2	FACW-	1	100	11.1	18.2	14.6	
Eleocharis erythropoda	2	OBL	1	75	11.1	13.6	12.4	
SOIL	0		1	50	11.1	9.1	10.1	
Asclepias verticillata	1	UPL	1	25	11.1	4.5	7.8	
Aster novae-angliae	4	FACW	1	25	11.1	4.5	7.8	
			9	550				

ACRONYM	C SCIENTIFIC NAME	W WETNESS	PHYSIOGNOM	COMMON NAME
AGRALA	0 AGROSTIS ALBA	-3 FACW	Ad P-Grass	REDTOP
ASCVER	1 Asclepias verticillata	5 UPL	Nt P-Forb	WHORLED MILKWEED
ASTNOV	4 Aster novae-angliae	-3 FACW	Nt P-Forb	NEW ENGLAND ASTER
ELEERY RUSH	2 Eleocharis erythropoda	-5 OBL	Nt P-Sedge	RED-ROOTED SPIKE

-

HELGRO	2 Helianthus grosseserratus	-2 FACW-	Nt P-Forb	SAWTOOTH SUNFLOWER
SOIL	0 SOIL	0 nil	nil	SOIL
SOLALT	1 Solidago altissima	3 FACU	Nt P-Forb	TALL GOLDENROD

,

•

Site:Goodenow Grove, Will County, IllinoisLocale:Goodenow GA Shrub PlotDate:June 9, 2004 four hoursBy:Earth TechFile:c:\FQA\studies\BaselineReport\Goodenow Shrub A.tra

				TRAI	SECT D	ATA, QUA	ADRAT			
QUAD	MC	W/Ad	FQI	W/Ad	MW	W/Ad	NS	TS	MW SEQ	W/Ađ
1	1.0	1.0	1.0	1.0	-5.0	-5.0	1	1	~5.0	-5.0
2	0.0	0.0	0.0	0.0	0.0	0.0	0	0	0.0	0.0
AVG STD	0.5	0.5 0.7	0.5	+	-2.5 3.5	-2.5 3.5	0.5	0.5		

	C	NUMBER		1	NATIVE SPECIES
	0	0		1	TOTAL SPECIES
	1	1		1.0	NATIVE MEAN C
	2	0 0 to 3		1.0	W/Adventives
	3	0 100.0%		1.0	NATIVE FQI
	4	0		1.0	W/Adventives
	5	0		~5.0	NATIVE MEAN W
	6	0 4 to 7		-5.0	W/Adventives
	7	0.0%			
	8	0			
	9	0 8 to 10			
	10	0 0.0%			
3	1	100.0%	Adventive	0 0 0) %

1 0 1 0 0 0 0 0 0 0 0	$100.0\% \\ 0.0\% \\ 100.0\% \\ 0.0$	Adventive Tree Shrub W-Vine H-Vine P-Forb B-Forb A-Forb P-Grass A-Grass	0 0 0 0 0 0 0 0 0	$\begin{array}{c} 0.0\% \\ 0.0\% \\ 0.0\% \\ 0.0\% \\ 0.0\% \\ 0.0\% \\ 0.0\% \\ 0.0\% \\ 0.0\% \\ 0.0\% \\ 0.0\% \\ 0.0\% \\ 0.0\% \end{array}$
0	0.0%	A-Grass	0	0.0%
0	0.0% 0.0% 0.0%	P-Sedge A-Sedge	0	0.0% 0.0%
	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0.0% Tree 1 100.0% Shrub 0 0.0% W-Vine 0 0.0% H-Vine 0 0.0% B-Forb 0 0.0% B-Forb 0 0.0% A-Forb 0 0.0% A-Grass 0 0.0% P-Sedge 0 0.0% A-Sedge	0 0.0% Tree 0 1 100.0% Shrub 0 0 0.0% M-Vine 0 0 0.0% H-Vine 0 0 0.0% P-Forb 0 0 0.0% P-Forb 0 0 0.0% A-Forb 0 0 0.0% A-Forb 0 0 0.0% A-Grass 0 0 0.0% P-Sedge 0 0 0.0% A-Sedge 0

	i	PHYSIOGNOMIC	RELATI	[VE	IMPORTANCE	VALUES	
PHY	SIOGNOM	Y FI	RQ	COV	/ RFRQ	RCOV	RIV
Nt	Shrub		1	65	100.0	100.0	100.0

	SPECIES RELATIVE IMPORT	ANCE VA	LUES			
SCIENTIFIC NAME	C WETNESS	FRQ	COV	RFRQ	RCOV	RIV
EMPTY QUADRAT	0	1	100	50.0	60.6	55.3
Salix interior	1 OBL	1	65	50.0	39.4	44.7
		2	165			

ACRONYM	C SCIENTIFIC NAME	W WETNESS	PHYSIOGNOMY	COMMON NAME
EMPTY	0 EMPTY QUADRAT	0 nil	nil	EMPTY QUADRAT
SALINT	1 Salix interior	-5 OBL	Nt Shrub	SANDBAR WILLOW

۰.

: -

. •• ·

Site:	Goodenow Grove, Will County, Illinois
Locale:	Goodenow Transect A, Tree Plot
Date:	June 9, 2004 Two hours
By:	Earth Tech
File:	c:\FQA\studies\BaselineReport\Goodenow Transect A, Tree Plot.tra

-

. •••••• •

				TRAI	ISECT DA	ATA, QUA	ADRAT			
QUAD	MC	W/Ad	FQI	W/Ad	MW	W/Ad	NS	TS	MW SEO	W/Ad
1	3.0	3.0	5.2	5.2	0.0	0.0	3	3	0.0	0.0
2	2.7	2.7	4.6	4.6	-1.3	-1.3	3	3	-1.3	-1.3
AVG	2.8	2.8	4.9	4.9	-0.7	-0.7	3.0	3.0		
STD	0.2	0.2	0.4	0.4	0.9	0.9	0.0	0.0		

	C 0 1 2 3 4 5 6 7 8 9 10	NUMBER 0 1 2 0 to 0 60. 0 2 0 4 to 0 40. 0 0 8 to 0 0.	0% 7 0% 10		5 NATIVE SPECIES 5 TOTAL SPECIES 3.0 NATIVE MEAN C 3.0 W/Adventives 6.7 NATIVE FQI 6.7 W/Adventives -0.6 NATIVE MEAN W -0.6 W/Adventives
Native	5	100.0%	Adventive	0	0.0%
Tree	5	100.0%	Tree	0	0.0%
Shrub	0	0.0%	Shrub	0	0.0%
W-Vine	0	0.0%	W-Vine	0	0.0%
H-Vine	0	0.0%	H-Vine	0	0.0%
P-Forb	0	0.0%	P-Forb	0	0.0%
B-Forb	0	0.0%	B-Forb	0	0.0%
A-Forb	0	0.0%	A-Forb	0	0.0%
P-Grass	0	0.0%	P-Grass	0	0.0%
A-Grass	0	0.0%	A-Grass	0	0.0%
P-Sedge	0	0.0%	P-Sedge	0	0.0%
A-Sedge	0	0.0%	A-Sedge	0	0.0%
Cryptogam	0	0.0%			

I	PHYSIOGNOMIC	REL	ATIVE	IMPORTANCE	VALUES	
PHYSIOGNOMY	f FI	٢Q	COV	RFRQ	RCOV	RIV
Nt Tree		6	23	100.0	100.0	100.0

SPECIES	RELAT	IVE IMPOR	TANCE VAL	LUES			
SCIENTIFIC NAME	С	WETNESS	FRQ	COV	RFRO	RCOV	RIV
Populus deltoides		FAC+	2	13	33.3	56.5	44.9
Fraxinus pennsysubintegerrima	1	FAC	1	5	16.7	21.7	19.2
Quercus macrocarpa	5	FAC-	1	2	16.7	8.7	12.7
Salix amygdaloides	5	FACW	1	2	16.7	8.7	12.7
Crataegus crus-galli	2	FAC	1	1	16.7	4.3	10.5
			6	23			-9.9

ACRONYM	C SCIENTIFIC NAME	W	WETNESS	PHYSIOGNOMY	COMMON NAME
CRACRU	2 Crataegus crus-galli	0	FAC	Nt Tree	COCKSPUR HAWTHORN
FRAPES	l Fraxinus pennsylvanica subintegerrima	0	FAC	Nt Tree	GREEN ASH
POPDEL	2 Populus deltoides	-1	FAC+	Nt Tree	EASTERN COTTONWOOD
QUEMAC	5 Quercus macrocarpa	1	FAC-	Nt Tree	BUR OAK
SALAMY	5 Salix amygdaloides	- 3	FACW	Nt Tree	PEACH-LEAVED WILLOW

Site:	Goodenow Grove, Will County, Illinois
Locale:	Goodenow Transect B, Tree Plot
Date:	June 9, 2004 Two hours
By:	Earth Tech
File:	c:\FQA\studies\BaselineReport\Goodenow Transect B, Tree Plot.tra

				TRAI	NSECT DA	ATA, QUA	ADRAT			
QUAD	MC	W/Ad	FQI	W/Ad	MW	W/Ad	NS	TS	MW SEO	W/Ad
1	3.0	3.0	4.2	4.2	-3.0	-3.0	2	2	-1.Ĩ	-1.5
2	2.0	2.0	2.0	2.0	0.0	0.0	1	1	-1.8	-1.8
3	2.5	2.5	3.5	3.5	-2.5	-2.5	2	2	-1.2	
AVG	2.5	2.5	3.3	3.3	-1.8	-1.8	1.7	1.7		
STD	0.5	0.5	1.1	1.1	1.6	1.6	0.6	0.6		

C	NUMBER	4 NATIVE SPECIES
C	WORDER	4 NATIVE SPECIES
0	0	4 TOTAL SPECIES
1	1	2.3 NATIVE MEAN C
2	2 0 to 3	2.3 W/Adventives
3	0 75.0%	4.5 NATIVE FQI
4	1	4.5 W/Adventives
5	0	-1.5 NATIVE MEAN W
6	0 4 to 7	-1.5 W/Adventives
7	0 25.0%	
8	0	
9	0 8 to 10	
10	0 0.0%	

Native	4	100.0%	Adventive	0	0.0%
Tree	4	100.0%	Tree	0	0.0%
Shrub	0	0.0%	Shrub	0	0.0%
W-Vine	0	0.0%	W-Vine	0	0.0%
H-Vine	0	0.0%	H-Vine	0	0.0%
P-Forb	0	0.0%	P-Forb	0	0.0%
B-Forb	0	0.0%	B-Forb	0	0.0%
A-Forb	0	0.0%	A-Forb	0	0.0%
P-Grass	0	0.0%	P-Grass '	0 '	0.0%
A-Grass	0	0.0%	A-Grass	0	: 0.0%
P-Sedge	0	0.0%	P-Sedge	0	0.0%
A-Sedge	0	0.0%	A-Sedge	0	0.0%
Cryptogam	0	0.08			

	PHYSIOGNOMIC	RELATIV	E IMPO	ORTANCE	VALUES	
PHYSIOGNOM	Y FI	RQ CO	v	RFRQ	RCOV	RIV
Nt Tree		5 3	31 :	100.0	100.0	100.0

SPECIES RE	LAT	IVE IMPORT	ANCE VAL	UES			
SCIENTIFIC NAME	С	WETNESS	FRQ	COV	RFRQ	RCOV	RIV
Salix nigra	4	OBL	2.	12	40.0	38.7	39.4
Populus deltoides	2	FAC+	1	8	20.0	25.8	22.9
Fraxinus pennsysubintegerrima	1	FAC	1	6	20.0	19.4	19.7
Crataegus crus-galli	2	FAC	1	5	20.0	16.1	18.1
			5	31			

ACRONYM	C SCIENTIFIC NAME	W	WETNESS	PH	YSIOGNOMY	COMMON NAME
CRACRU	2 Crataegus crus-galli	0	FAC	Nt	Tree	COCKSPUR HAWTHORN
FRAPES	1 Fraxinus pennsylvanica subintegerrima	0	FAC	Nt	Tree	GREEN ASH
POPDEL	2 Populus deltoides	-1	FAC+	Nt	Tree	EASTERN COTTONWOOD
SALNIG	4 Salix nigra	- 5	OBL	Nt	Tree	BLACK WILLOW

Site:	Goodenow Grove, Will County, Illinois
Locale:	Goodenow GB Herbaceous Plot
Date:	June 9, 2004 Three hours
By:	Earth Tech
File:	c:\FQA\studies\BaselineReport\Goodenow Transect B.tra

				TRAI	SECT DA	ATA, QUA	ADRAT			
QUAD	MC	W/Ad	FQI	W/Ad	MW	W/Ad	NS	TS	MW SEO	W/Ad
1	3.0	2.4	9.9	8.8	1.2	1.1	11	14	0.3	0.5
2	2.6	2.0	6.8	6.0	-0.6	-0.2	7	9	-1.5	-1.4
3	4.0	4.0	5.7	5.7	-5.0	-5.0	2	2	-2.8	-2.6
AVG	3.2	2.8	7.5	6.8	-1.5	-1.4	6.7	8.3		
STD	0.7	1.1	2.2	1.7	3.2	3.2	4.5	6.0		

	C 0 1 2 3 4 5 6 7 8 9 10	NUMBER 0 5 4 0 to 2 64.7 3 2 0 4 to 0 29.4 1 0 8 to 1 0 5.9	* 7 * 0		17 NATIVE SPECIES 20 TOTAL SPECIES 2.9 NATIVE MEAN C 2.5 W/Adventives 11.9 NATIVE FQI 11.0 W/Adventives -0.3 NATIVE MEAN W -0.1 W/Adventives
Native	17	85.0%	Adventive	3	15.0%
Tree	0	0.0%	Tree	0	0.0%
Shrub	3	15.0%	Shrub	0	0.0%
W-Vine	1	5.0%	W-Vine	0	0.0%
H-Vine	0	0.0%	H-Vine	0	0.0%
P-Forb	9	45.0%	P-Forb	1	5.0%
B-Forb	1	5.0%	B-Forb	0	0.0%
A-Forb	0	0.0%	A-Forb	0	0.0%
P-Grass	1	5.0%	P-Grass	2``	10.0%
A-Grass	0	0.0%	A-Grass	0	0.0%
P-Sedge	2	10.0%	P-Sedge	0	0.0%
A-Sedge	0	0.0%	A-Sedge	0	0.0%
Cryptogam	0	0.Ó%			

	PHYSIOGNOMIC	RELATIVE	IMPORTAN	CE VALUES	•
PHYSIOGNON	fY FR	Q CO1	/ RFRQ	RCOV	RIV
Nt P-Forb	1	1 400	44.0	34.0	39.0
Ad P-Grass	5	3 250) 12.0	21.3	16.6
Nt Shrub		4 150	16.0	12.8	14.4
Nt P-Sedge	2	2 175	5 8.0	14.9	11.4
Ad P-Forb		2 50	8.0	4.3	6.1
Nt P-Grass	;	1 79	5 4.0	6.4	. 5.2
Nt W-Vine		1 50) 4.0	4.3	4.1
Nt B-Forb		1 25	5 4.0	2.1	3.1

SPECIES	RELAT	IVE IMPORT	ANCE VA	LUES			
SCIENTIFIC NAME	С	WETNESS	FRQ	COV	RFRQ	RCOV	RIV
AGROSTIS ALBA	0	FACW	2	150	7.4	12.2	9.8
Fragaria virginiana	1	FAC-	2	100	7.4	8.2	7.8
Cornus racemosa	1	FACW-	2	75	7.4	6.1	6.8
Helianthus rigidus	8	UPL	2	75	7.4	6.1	6.8
Carex stricta	5	OBL	1	100	3.7	8.2	5.9
POA PRATENSIS	0	FAC-	1	100	3.7	8.2	5.9
CHRYSANTHEMUM LM PINNATIFIDUM	0	UPL	2	50	7.4	4.1	5.7
Calamagrostis canadensis	3	OBL	1	75	3.7	6.1	4.9
Carex granularis	4	FACW+	1	75	3.7	6.1	4.9
Solidago altissima	1	FACU	1	75	3.7	6.1	4.9
Rhus radicans	2	FAC+	1	50	3.7	4.1	3.9
Rubus allegheniensis	3	FACU+	1	50	3.7	4.1	3.9
Agrimonia gryposepala	2	FACU+	1	25	3.7	2.0	2.9
Cirsium discolor	2	UPL	1	25	3.7	2.0	2.9

ŀ

Helianthus grosseserratus	2 E	FACW~	1	25	3.7	2.0	2.9
Potentilla simplex -	4 I	FACU-	1	25	3.7	2.0	2.9
Pycnanthemum virginianum	5 F	FACW+	1	25	3.7	2.0	2.9
Rudbeckia hirta	1 E	FACU	1	25	3.7	2.0	2.9
Salix interior	1 (OBL	1	25	3.7	2.0	2.9
SOIL	0		1	25	3.7	2.0	2.9
Solidago graminifolia	4 F	FACW-	1	25	3.7	2.0	2.9
WATER	0		1	25	3.7	2.0	2.9
			27	1225			

ACRONYM	C SCIENTIFIC NAME	W WETNESS	PHYSIOGNOMY	COMMON NAME
AGRGRY	2 Agrimonia gryposepala	2 FACU+	Nt P-Forb	TALL AGRIMONY
AGRALA	0 AGROSTIS ALBA	-3 FACW	Ad P-Grass	REDTOP
CALCAN	3 Calamagrostis canadensis	-5 OBL	Nt P-Grass	BLUE JOINT GRASS
CXGRAN	4 Carex granularis	-4 FACW+	Nt P-Sedge	PALE SEDGE
CXSTRI SEDGE	5 Carex stricta	-5 OBL	Nt P-Sedge	COMMON TUSSOCK
CHRLEP	0 CHRYSANTHEMUM LEUCANTHEMUM PINNATIFIDUM	5 UPL	Ad P-Forb	OX-EYE DAISY
CIRDIS	2 Cirsium discolor	5 UPL	Nt B-Forb	PASTURE THISTLE
CORRAC	1 Cornus racemosa	-2 FACW-	Nt Shrub	GRAY DOGWOOD
FRAVIR	1 Fragaria virginiana	l FAC-	Nt P-Forb	WILD STRAWBERRY
HELGRO	2 Helianthus grosseserratus	-2 FACW-	Nt P-Forb	SAWTOOTH SUNFLOWER
HELRIG	8 Helianthus rigidus	5 UPL	nil	PRAIRIE SUNFLOWER
POAPRA	0 POA PRATENSIS	1 FAC-	Ad P-Grass	KENTUCKY BLUE GRASS
POTSIS	4 Potentilla simplex	4 FACU-	Nt P-Forb	COMMON CINQUEFOIL
PYCVIR MINT	5 Pycnanthemum virginianum	-4 FACW+	Nt P-Forb	COMMON MOUNTAIN
RHURAD	2 Rhus radicans	-1 FAC+	Nt W-Vine	POISON IVY
RUBALL	3 Rubus allegheniensis	2 FACU+	Nt Shrub	COMMON BLACKBERRY
RUDHIR	1 Rudbeckia hirta	3 FACU	Nt P-Forb	BLACK-EYED SUSAN
SALINT	1 Salix interior	~5 OBL	Nt Shrub	SANDBAR WILLOW
SOIL	0 SOIL	0 nil	nil	SOIL
SOLALT	1 Solidago altissima	3 FACU	Nt P-Forb	TALL GOLDENROD
SOLGRG GOLDENROD	4 Solidago graminifolia	-2 FACW-	Nt P-Forb	COMMON GRASS-LEAVED
WATER	0 WATER	0 nil	nil	WATER

•

·

Site: Locale:	Goodenow Grove, Will County, Illinois Goodenow GB Shrub
Date:	June 9, 2004 Four hours
By:	Earth Tech
File:	c:\FQA\studies\BaselineReport\Goodenow Shrub B.tra

QUAD 1 2 3	MC 3.0 1.5 0.0	W/Ad 2.0 1.0 0.0	FQI 6.0 2.1 0.0	TRA1 W/Ađ 4.9 1.7 0.0	NSECT D2 MW 1.3 -3.0 0.0	ATA, QU W/Ad 2.2 -0.3 0.0	ADRAT NS 4 2 0	TS 6 3 0	MW SEQ -0.9 -0.6 -1.5	W/Ad 0.9 0.6 -0.2
AVG STD	1.5 1.5	1.0 1.0	2.7 3.0	2.2 2.5	-0.6 2.2	0.6 1.4	2.0 2.0	3.0 3.0		

-

	C 0 1 2 3 4 5 6 7 8 9 10	0 0 1 4 t 0 16 0 0 8 to	.3%		6 NATIVE SPECIES 8 TOTAL SPECIES 2.5 NATIVE MEAN C 1.9 W/Adventives 6.1 NATIVE FQI 5.3 W/Adventives -0.2 NATIVE MEAN W 0.9 W/Adventives
Native Tree Shrub W-Vine H-Vine P-Forb B-Forb A-Forb P-Grass P-Grass P-Sedge A-Sedge Cryptogam	6 3 0 0 0 0 0 0 0 0 0 0 0 0	75.0% 37.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0	Adventive Tree Shrub W-Vine H-Vine P-Forb B-Forb A-Forb P-Grass A-Grass P-Sedge A-Sedge	2 0 2 0 0 0 0 0 0 0 0 0 0 0	25.0% 0.0% 25.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Ad Shrub 3 10 33.3 23.3 24 Nt Tree 3 9 33.3 20.9 27	NE Tree
---	---------

0.07.00	SPECIES RELATIVE	IMPORTANCE VA	LUES			
SCIENTIFIC NAME ELAEAGNUS UMBELLATA	C WET		COV	RFRQ	RCOV	RIV
Rubus allegheniensis	0 UPL	-	9	20.0	20.9	20.5
Cornus racemosa	3 FAC		13	10.0	30.2	20.1
Crataegus crus-galli	1 FAC		10	10.0	23.3	16.6
Populus deltoides	2 FAC	***	6	10.0	14.0	12.0
Quercus velutina	2 FAC 6 UPL	-	2	10.0	4.7	7.3
ROSA MULTIFLORA	0 FAC	-	1	10.0	2.3	6.2
Salix interior	1 OBL		1	10.0	2.3	6.2
EMPTY QUADRAT	0	1	0	10.0	2.3	6.2
	· ·	10	43	10.0	0.0	5.0
		20	4.7			

ACRONYM	C SCIENTIFIC NAME	W WETNESS	PHYSIOGNOM	Y COMMON NAME
CORRAC	1 Cornus racemosa	-2 FACW~	Nt Shrub	GRAY DOGWOOD
CRACRU	2 Crataegus crus-galli	0 FAC	Nt Tree	COCKSPUR HAWTHORN
ELAUMB	0 ELAEAGNUS UMBELLATA	5 UPL	Ad Shrub	AUTUMN OLIVE

EMPTY	0 EMPTY QUADRAT	0 nil nil	EMPTY QUADRAT
POPDEL	2 Populus deltoides	-l FAC+ Nt T	ree EASTERN COTTONWOOD
QUEVEL	6 Quercus velutina	5 UPL NT T	ree BLACK OAK
ROSMUL	0 ROSA MULTIFLORA	3 FACU Ad S	hrub MULTIFLORA ROSE
RUBALL	. 3 Rubus allegheniensis	2 FACU+ Nt S	hrub COMMON BLACKBERRY
SALINT	1 Salix interior	-5 OBL Nt S	hrub SANDBAR WILLOW

. . . .

.

Site:	Goodenow Grove, Will County, Illinois
Locale:	Goodenow Transect B, Tree Plot
Date:	June 9, 2004 Two hcurs
By:	Earth Tech
File:	c:\FQA\studies\BaselineReport\Goodenow Transect B, Tree Plot.tra

				TRAI	NSECT D	ATA, QU	ADRAT			
QUAD	MC	W/Ad	FQI	W/Ad	MW	W/Ad	NS	TS	MW SEO	W/Ad
1	3.0	3.0	4.2	4.2	-3.0	-3.0	2	2	-1.5	-1.5
2	2.0	2.0	2.0	2.0	0.0	0.0	1	1	-1.8	-1.8
3	2.5	2.5	3.5	3.5	-2.5	-2.5	2	2	-1.2	-1.2
AVG	2.5	2.5	3.3	3.3	-1.8	-1.8	1.7	1.7		
STD	0.5	0.5	1.1	1.1	1.6	1.6	0.6	0.6		

	~					
	С	NUMBER			4	NATIVE SPECIES
	0	0			4	TOTAL SPECIES
	1	1			23	NATIVE MEAN C
	2	2 0 to	٦		2.3	W/Adventives
	3					
	-	0 75.	0.8		4.5	NATIVE FQI
	4	1			4.5	W/Adventives
	5	0			-1.5	NATIVE MEAN W
	6	0 4 to	7		-1.5	W/Adventives
	7	0 25.	0%		1.5	W/ MAVEILEIVES
	8	0				
	9	0 8 to 3	10			
	10	0 0.1	0%			
Native	4	100.0%	Adventive	0	0.0)
Tree	4	100.0%	Tree	0	0.0	
Shrub	0	0.0%	Shruh	Ň	0.0	

Shrub	0	0.0%	Shrub	0	0.0%
W-Vine	0	0.0%	W-Vine	0	0.0%
H-Vine	0	0.0%	H-Vine	0	0.0%
P-Forb	0	0.0%	P-Forb	0	0.0%
B-Forb	0	0.0%	B-Forb	0	0.0%
A-Forb	0	0.0%	A-Forb	0	0.0%
P-Grass	. 0	0.0%	P-Grass	0	0.0%
A-Grass	0	0:.0%	A-Grass	0	0.0%
P~Sedge	0	0.0%	P-Sedge	0	0.0%
A-Sedge	0	0.0%	A-Sedge	0	0.0%
Cryptogam	0	0.0%			

PHY	SIOGNOMIC	RĖI	LATIVE	IMPORTANCE	VALUES	
PHYSIOGNOMY	FF	١Q	COV	RFRQ	RCOV	RIV
Nt Tree		5	31	100.0	100.0	100.0

	SPECIES R	ELAT:	IVE IMPORT	ANCE VA	LUES			
SCIENTIFIC NAME		C	WETNESS	FRQ	COV	RFRQ	RCOV	RIV
Salix nigra	•	4	OBL	2	12	40.0	38.7	39.4
Populus deltoides		2	FAC+	1	8	20.0	25.8	22.9
Fraxinus pennsys	subintegerrima	1	FAC	1	6	20.0	19.4	19.7
Crataegus crus-gall	.i	2	FAC	1	5	20.0	16.1	18.1
				5	31			

ACRONYM	C SCIENTIFIC NAME	W WETNES	S PHYSIOGNOM	COMMON NAME
CRACRU	2 Crataegus crus-galli	0 FAC	Nt Tree	COCKSPUR HAWTHORN
FRAPES	1 Fraxinus pennsylvanica subintegerrima	0 FAC	Nt Tree	GREEN ASH
POPDEL	2 Populus deltoides	-1 FAC+	Nt Tree	EASTERN COTTONWOOD
SALNIG	4 Salix nigra	-5 OBL	Nt Tree	BLACK WILLOW

	Site: Locale: Date: By: File:	Gooder June 1 Earth	now Grove, now GC Her 5, 2004 Tech Astudies	baceous six hou	Plot rs		Transec	t C.tr	a		
				,	FRANSECT	DAWA .	مديرمين				
	QUAD	MC	W/Ad	FOI W/				TS	MW SI	FO	W/Ad
	1	3.0			.0 -0.5			4		.6	0.6
	2	2.7		3.0 8		1.	89	9		.3	1.3
	3 4	4.5	4.5 1	1.0 11				б		.4	1.4
	4 5	3.3 4.0			.2 -0.2			8		.5	0.5
	6	4.0 2.6			.9 -1.0 .8 1.2			3	~0		-0.0
	·	210	2.0 .		.0 1.2	1.	2 5	5	0	.1	0.1
	AVG	3.3			.8 0.6		6 5.8	5.8			
	STD	0.8	0.8 2	2.0 2	.0 1.4	1.	4 2.3	2.3			
		C 0 1 2 3 4 5 6 7 8 9 10	2 55 4 2 0 4 t 3 45 0 0 8 t c	.0%			20 TOT 3.3 NAT 3.3 14.8 NAT 14.8 1.5 NAT	W/Adver IVE FQ: W/Adver	CIES AN C ntives I ntives AN W		
	Native	20	100.0%		ntive	0	0.0%				
	Tree Shrub	0 1	0.0% 5.0%	Tree		0	0.0%				
	W-Vine	1	5.0%	Shru W-Vi		0 0	0.0% 0.0%				
	H-Vine	0	0.0%	H-Vi		0	0.0%				
	P-Forb	16	80.0%	P-Fc	rb	0	0.0%				
	B-Forb	0	0.0%	B-Fo		0	0.0%				
	A-Forb P-Grass	1 1	5.0%	A-Fo		0	0.0%				
•	A-Grass	0	5.0% 0.0%	P-Gr A-Gr		0 0	0.0% 0.0%				
	P-Sedge	õ	0.0%	P-Se		0	0.0%				
·	A-Sedge	0	0.0%	A-Se	-	0	0.0%				
	Cryptogam	0	0.0%								
	PHYSIOGNOM Nt P-Forb Nt Shrub Nt P-Grass Nt A-Forb Nt W-Vine		GNOMIC REL FRQ 31 1 1 1 1	ATIVE IM COV 1550 25 25 25 25 25	PORTANCE RFRQ 88.6 2.9 2.9 2.9 2.9 2.9	VALUES RCOV 93.9 1.5 1.5 1.5	RIV 91.3 2.2 2.2 2.2 2.2				
			CD	הכובכ סם	LATIVE IN	ייגייסחסו	00 1731 11	20			
	SCIENTIFIC	NAME	51	KD	C WETNE				FRQ	RCOV	RI

٠.

: •

SCIENTIFIC NAME	С	WETNESS	FRQ	COV	RFRO	RCOV	RIV
Sanicula gregaria	2	FAC+	6	500	17.1	30.3	23.7
Cryptotaenia canadensis	2	FAC	4	200	11.4	12.1	11.8
Actinomeris alternifolia	5	FACW	3	100	8.6	6.1	7.3
Circaea lutetiana canadensis	1	FACU	2	125	5.7	7.6	6.6
Asarum canadense	7	UPL	2	100	5.7	6.1	5.9
Laportea canadensis	3	FACW	2	75	5.7	4.5	5.1
Allium cernuum	7	[FAC-]	2	50	5.7	3.0	4.4
Geranium maculatum	4	[UPL]	2	50	5.7	3.0	4.4
Polygonum virginianum	2	FAC	1	75	2.9	4.5	3.7
Thalictrum dioicum	7	FACU+	1	75	2.9	4.5	3.7
Eupatorium rugosum	4	UPL	1	50	2.9	3.0	2.9
Fragaria virginiana	1	FAC-	1	50	2.9	3.0	2.9
Agrimonia gryposepala	2	FACU+	1	25	2.9	1.5	2.2
Elymus virginicus	4	FACW-	1	25	2.9	1.5	2.2

Galium aparine	1 FACU	1	25	2.9	1.5	2.2
Oxalis europaea	0 FACU	1	25	2.9	1.5	2.2
Potentilla simplex	4 FACU-	. 1	25	2.9	1.5	2.2
Rhus radicans	2 FAC+	1	25	2.9	1.5	2.2
Rubus allegheniensis	3 FACU+	. 1	25	2.9	1.5	2.2
Solidago ulmifolia	5 UPL	1	25	2.9	1.5	2.2
		35	1650			5.5

-

.

•

ACRONYM	C SCIENTIFIC NAME	W WETNESS	PHYSIOGNOM	COMMON NAME
ACTALT	5 Actinomeris alternifolia	-3 FACW	Nt P-Forb	WINGSTEM
AGRGRY	2 Agrimonia gryposepala	2 FACU+	Nt P-Forb	TALL AGRIMONY
ALLCER	7 Allium cernuum	1 [FAC-]	Nt P-Forb	NODDING WILD ONION
ASACAN	7 Asarum canadense	5 UPL	Nt P-Forb	WILD GINGER
CIRLUC NIGHTSHADI	l Circaea lutetiana canadensis	3 FACU	Nt P-Forb	ENCHANTER'S
CRYCAN	2 Cryptotaenia canadensis	0 FAC	Nt P-Forb	HONEWORT
ELYVIR	4 Elymus virginicus	-2 FACW-	Nt P-Grass	VIRGINIA WILD RYE
EUPRUG	4 Eupatorium rugosum	5 UPL	Nt P-Forb	WHITE SNAKEROOT
FRAVIR	l Fragaria virginiana	1 FAC-	Nt P-Forb	WILD STRAWBERRY
GALAPA	1 Galium aparine	3 FACU	Nt A-Forb	ANNUAL BEDSTRAW
GERMAC	4 Geranium maculatum	5 [UPL]	Nt P-Forb	WILD GERANIUM
LAPCAN	3 Laportea canadensis	-3 FACW	Nt P-Forb	WOOD NETTLE
OXAEUR	0 Oxalis europaea	3 FACU	Nt P-Forb	TALL WOOD SORREL
POLGVI	2 Polygonum virginianum	0 FAC	Nt P-Forb	WOODLAND KNOTWEED
POTSIS	4 Potentilla simplex	4 FACU-	Nt P-Forb	COMMON CINQUEFOIL
RHURAD	2 Rhus radicans	-1 FAC+	Nt W-Vine	POISON IVY
RUBALL	3 Rubus allegheniensis	2 FACU+	Nt Shrub	COMMON BLACKBERRY
SANGRE SNAKEROOT	2 Sanicula gregaria	-1 FAC+	Nt P-Forb	CLUSTERED BLACK
SOLULM GOLDENROD	5 Solidago ulmifolia	5 UPL,	Nt P-Forb	ELM-LEAVED
THADIO	7 Thalictrum dioicum	2 FACU+	Nt P-Forb	EARLY MEADOW RUE

Locale:		now Grov now GC :		1 Cou	unty,	11:	lind	ois						
Date: By:		15, 2004	4 Six	hou	rs									
File:	Earth c:\FQ#	∙recn A\studie	es\Base	line	Repor	t\Gr	onde	າກດາ	, S	hruh	C tra			
	-										C. LI2	1		
01D -						ECT	DAT	ΓA,	QU	ADRAT				
QUAD 1	MC 2.7	W/Ad 2.7	FQI 4.6	W/A 4.		МV З.(W/2		NS			SEQ	W/Ad
2	1.0	1.0	1.0	1.		3.0			.0 .0	3		3 1	3.0 2.7	3.0 2.7
3	5.5	5.5	13.5	13.		2.2	2		. 2	6		6	2.2	2.2
4 5	3.7 4.3	3.7 4.3	6.4 7.5	6. 7.	4	1.3			.3 .3	3		3	2.3	2.3
6	4.0	4.0	11.3			2.9			.9	8		3 8	2.5 3.1	2.5 3.1
AVG	3.5	3.5	7.4	7	4	2.6	:	2	б	4.0	٨	0		
STD	1.5	1.5	4.5			0.7			7	2.5				
	С	NUMBE	R									SPECIE		
	0 1	0 2										PECIES		
	2		0 to 3							.1 NA' .1		MEAN C ventiv		
	3	3	47.1%						16.	.7 NA'				
	4 5	0 6							16.			ventiv MEAN W	es	
	6	0	4 to 7						2.			ventiv	es	
	7 8	2 1	47.1%											
	9		to 10											
	10	0	5.9%											
Native	17	100.0	8	Adve	ntive	2	0		0).0%				
Tree ·	12	70.6	8	Tree		-	Ő).0%				
Shrub W-Vine	4 1	23.5 5.9		Shru			0			0.08				
H-Vine	0	0.0		W-Vi H-Vi			0 0).0%).0%				
P-Forb	0	0.0	8	P-Fo	rb		0			.08				
B-Forb A-Forb	0 0	0.0		B-Fo A-Fo			0			.0%				
P-Grass	õ	0.0		P-Gr			0 0			.0% .0%				
A-Grass	0	0.0		A-Gr			0		0	.0%				
P-Sedge A-Sedge	0 0	0.0		P-Se A-Se			0 0			.0% .0%				
Cryptogam	Ō	0.0			age		U		0	.08				
	PHYSTOC	SNOMIC 1	የድ፤.ልጥተህ	יד ד או	גייימרים	NCE	1771		~					
PHYSIOGNOM	Y	FR		OV OV	RFR			RCO.		RIV	,			
Nt Tree		10		35	66.			36.		51.6				
Nt Shrub Nt W-Vine			7 L	59 2	29. 4.		(61. 2.		45.3 3.1				
				-		~		.	1	5.1				
			SPECIE	S REI	LATIV	E IN	1201	RTAI	NCE	VALU	ES			
SCIENTIFIC					C₩	ETNI			FR		COV	RFRQ	RCOV	RIV
Viburnum p Ostrya virg					5 F.	ACU ACU-				1	47	4.2	49.0	
Prunus sero					1 F.		-			2 2	7 7	8.3 8.3	7.3 7.3	7.8 7.8
Prunus viro					3 [FACI]]		:	3	3	12.5	3.1	7.8
Staphylea t Fraxinus an					7 F.					2	7	8.3	7.3	7.8
Tilia ameri		4			5 F. 5 F.					2 2	5 2	8.3 8.3	5.2 2.1	6.8 5.2
Carya ovata	5 F.	ACU			:	1	3	4.2	3.1	3.6				
Carpinus ca Crataegus m	uro⊥ini nollis	ana vir	giniana	£	8 F. 2 F.					1	2	4.2	2.1	3.1
Crataegus p		a			5 U					1 1	2 2	4.2 4.2	2.1 2.1	3.1 3.1
Fraxinus pe	ennsy		egerrin	na	1 F2	AC				1	2	4.2	2.1	3.1
Rhus radica Rubus alleg		cic			2 F2					L	2	4.2	2.1	3.1
Acer saccha					3 F2 3 F2					L	2 1	4.2 4.2	2.1 1.0	3.1
Carya cordi	formis				7 [1]			L	1	4.2	1.0	2.6 2.6
													-	

٠,

Site: Goodenow Grove, Will County, Illinois

.

Crataegus	punctata

2 UPL

1 24 1 4.2 1.0 2.6 96

ACRONYM	C SCIENTIFIC NAME	W WETNESS PHYSIOGNOMY COMMON NAME
ACESAU	3 Acer saccharum	3 FACU Nt Tree SUGAR MAPLE
CARCAV	8 Carpinus caroliniana virginiana	0 FAC Nt Tree BLUE BEECH
CARCOR	7 Carya cordiformis	3 [FACU] Nt Tree BITTERNUT HICKORY
CAROVT	5 Carya ovata	3 FACU Nt Tree SHAGBARK HICKORY
CRAMOL	2 Crataegus mollis	4 FACU- Nt Tree DOWNY HAWTHORN
CRAPRU	5 Crataegus pruinosa	5 UPL Nt Tree FROSTED HAWTHORN
CRAPUN	2 Crataegus punctata	5 UPL Nt Tree DOTTED HAWTHORN
FRAAMA	5 Fraxinus americana	3 FACU Nt Tree WHITE ASH
FRAPES	1 Fraxinus pennsylvanica subintegerrima	0 FAC Nt Tree GREEN ASH
OSTVIR	5 Ostrya virginiana	4 FACU- Nt Tree HOP HORNBEAM
PRUSER	1 Prunus serotina	3 FACU Nt Tree WILD BLACK CHERRY
PRUVIR	3 Prunus virginiana	3 [FACU] Nt Shrub CHOKE CHERRY
RHURAD	2 Rhus radicans	-1 FAC+ Nt W-Vine POISON IVY
RUBALL	3 Rubus allegheniensis	2 FACU+ Nt Shrub COMMON BLACKBERRY
STATRI	7 Staphylea trifolia	0 FAC Nt Shrub BLADDERNUT
TILAME	5 Tilia americana	3 FACU Nt Tree AMERICAN LINDEN
VIBPRU	5 Viburnum prunifolium	3 FACU Nt Shrub BLACK HAW

Site: Locale: Date: By: File:	Goodenow Grove, Will County, Illinois Goodenow Transect C, Tree Plot June 15, 2004 Six hours Earth Tech c:\FQA\studies\BaselineReport\Goodenow Transect C, Tree Plot.tra													
				TRA	NSECT I	DAT	A, OU	ADRAJ						
QUAD	MC	W/Ad	FQI	W/Ad	MW		W/Ad	NS	з ·		MW S	EQ	W/Ad	
1 2	6.3 4.3	6.3 4.3	11.0 7.5	11.0 7.5	3.0 3.0		3.0 3.0	3		3		.0	3.0	
3	6.0	6.0	8.5	8.5	3.5		3.5	3		3 2		.2 .5	3.2 2.5	
4	3.3	3.3	6.5	6.5	1.0		1.0	4		4		.7	2.7	
5 6	6.0 5.7	6.0 5.7	8.5 9.8	8.5 9.8	3.5 3.7		3.5	2		2		.7	2.7	
Ũ	5.7	5.7	2.0	9.0	5.1		3.7	3	i	3	3	.6	3.6	
AVG STD	5.3 1.2	5.3 1.2	8.6 1.6	8.6 1.6	2.9 1.0		2.9 1.0	2.8 0.8		.8 .8				
	C 0 1 2 3 4 5 6 7 8 9 10	0 0 7 0 4 2 0	to 3 25.0% to 7 75.0% to 10 0.0%				4 4 15 15 2	12 TO .4 NA .4 .3 NA .3	TAL S TIVE W/Ac TIVE W/Ac TIVE	SPEC SPECI MEAN dvent FQI dvent MEAN dvent	ES C ives ives W			
Native	12	100.0%		Adventi	ve	0		0.0%						
Tree Shrub	11 1	91.7% 8.3%		Tree Shrub		0).0%						
W-Vine	Ō	0.0%		W-Vine		0 0).0%).0%						
H-Vine	0	0.0%		H-Vine		0).0%						
P-Forb	0	0.0%		P-Forb		0).0%						
B-Forb A-Forb	0 0	0.0% 0.0%		B-Forb A-Forb		0 0).0%						
P-Grass	õ	0.0%		A-roid P-Grass		0).0%).0%						
A-Grass	0	0.0%	i	A-Grass		Ō).0%						
P-Sedge A-Sedge	0 0	0.0% 0.0%		P-Sedge		0).0%						
Cryptogam	0	0.0%	-	A-Sedge		0	C).0%						
	PHYSTO	SNOMIC RI	מד ממדז מ	E IMBOD										
PHYSIOGNOM		FRQ			FRQ		COV	RIN	1					
Nt Tree		16	-		4.1		8.7	96.4						
Nt Shrub		1			5.9		1.3	3.6						
SCIENTIFIC	NAME	5	SPECIES	5 RELAT	IVE IMF WETNES		TANCE FR		JES COV	חשמ	~	DOOL	5711	
Quercus rul					FACU	.0		4	20	RFR 23.		RCOV 26.3	RIV 24.9	
Ostrya virg					FACU-			2	12	11.	8	15.8	13.8	
Carya cordiformis 7 [FACU] 2 9 11.8 11.8 11.8										11.8				
Prunus sero		-			FAC- FACU			1 1	8 7	5. 5.		10.5 9.2	8.2 7.5	
Fraxinus ar				5	FACU			1	6	· 5.		7.9	6.9	
Fraxinus pe Carya ovata		.subinte	gerrim		FAC			1	6	5.		7.9	6.9	
Crataegus (11i			FACU FAC			1 1	2 · 2	5. 5.		2.6 2.6	4.3	
Tilia ameri		FACU			1	2	5.		2.6	4.3 4.3				
Crataegus p					UPL			1	1	5.5	9	1.3	3.6	
Viburnum pı	.unitol	ιum		5	FACU		1	1	1	5.9	9	1.3	3.6	
							1	,	76					

ACRONYM C SCIENTIFIC NAME

W WETNESS PHYSIOGNOMY COMMON NAME

.

۰.

· . ••

.

••••

CARCOR	7 Carya cordiformis	3 [FACU] Nt Tree	BITTERNUT HICKORY
CAROVT	5 Carya ovata	3 FACU Nt Tree	SHAGBARK HICKORY
CRACRU	2 Crataegus crus-galli	0 FAC Nt Tree	COCKSPUR HAWTHORN
CRAPRU	5 Crataegus pruinosa	5 UPL Nt Tree	FROSTED HAWTHORN
FRAAMA	5 Fraxinus americana	3 FACU Nt Tree	WHITE ASH
FRAPES	1 Fraxinus pennsylvanica subintegerrima	0 FAC Nt Tree	GREEN ASH
OSTVIR	5 Ostrya virginiana	4 FACU- Nt Tree	HOP HORNBEAM
PRUSER	1 Prunus serotina	3 FACU Nt Tree	WILD BLACK CHERRY
QUEMAC	5 Quercus macrocarpa	1 FAC- Nt Tree	BUR OAK
QUERUB	7 Quercus rubra	3 FACU Nt Tree	RED OAK
TILAME	5 Tilia americana	3 FACU Nt Tree	AMERICAN LINDEN
VIBPRU	5 Viburnum prunifolium	3 FACU Nt Shrub	BLACK HAW

. •• . •

Site:	Goodenow Grove, Will County, Illinois
Locale:	Goodenow GD Herbaceous Plot

Date: June 4, 2004 Four hours Earth Tech

By: File:

c:\FQA\studies\BaselineReport\Goodenow Transect D.tra

				TRAM	SECT D	ATA, QU	ADRAT			
QUAD 1	MC 3.0	W/Ad 1.5	FQI 4.2	W/Ad 3.0	MW 3.0	W/Ad 2.8	NS 2	TS 4	MW SEQ 2.5	W/Ad
2 3	3.5 1.6	3.0 1.6	8.6 3.6	7.9	2.0	2.4	6	7	1.9	2.6 2.0
4	2.3	1.6	4.0	3.6 3.1	0.8 -0.3	0.8 1.4	5 3	5 5	0.8 0.2	$1.5 \\ 1.1$
AVG STD	2.6 0.8	1.9 0.8	5.1 2.3	4.4 2.4	1.4 1.4	1.8 0.9	4.0 1.8	5.3 1.3		

12 NATIVE SPECIES 17 TOTAL SPECIES 2.6 NATIVE MEAN C

8.9 NATIVE FQI 7.5 W/Advent 7.5 W/Adventives 1.4 NATIVE MEAN W

W/Adventives

W/Adventives

1.8

С	NUMBER	
0	1	
1	3	
2	3 0 to 3	
3	1 66.7%	
4	1	
5	3	
6	0 4 to 7	
7	0 33.3%	
8	0	
9	0 8 to 10	
10	0 0.0%	
10	30 60	
12	70.6%	Adventive
1	5.9%	Tree
2	11.8%	Shrub
3	17.6%	W-Vine

	PHYSIOGNOMIC	RELATI	VE IMPO	RTANCE V	ALUES	
PHYSIOGNON		RQ	COV	RFRO	RCOV	RIV
Nt P-Forb		8	225	38.1	36.0	37.0
Ad Shrub		4	100	19.0	16.0	17.5
Nt Shrub	,	3	125	14.3	20.0	17.1
Nt W-Vine	s	3	100	14.3	16.0	15.1
Nt Tree		1	25	4.8	4.0	4.4
Ad B-Forb		1	25	4.8	4.0	4.4
Nt B-Forb		1	25	4.8	4.0	4.4

SPECIES	RELAT	IVE IMPOR	TANCE VAL	JUES			
SCIENTIFIC NAME	С	WETNESS	FRQ	COV	RFRO	RCOV	RIV
Ribes missouriense	5	UPL	2	100	9.5	16.0	12.8
Geum canadense	1	FAC	2	75	9.5	12.0	10.8
Arisaema triphyllum	4	FACW-	2	50	9.5	8.0	8.8
Fragaria virginiana	1	FAC-	2	50	9.5	8.0	8.8
Parthenocissus quinquefolia	2	FAC-	1	50	4.8	8.0	6.4
Agrimonia gryposepala	2	FACU+	1	25	4.8	4.0	4.4
ALLIARIA PETIOLATA	0	FAC	1	25	4.8	4.0	4.4
Circaea lutetiana canadensis	1	FACU	1	25	4.8	4.0	4.4
Hackelia virginiana	0	FAC-	1	25	4.8	4.0	4.4
LONICERA MAACKII	0	UPL	1	25	4.8	4.0	4.4
LONICERA TATARICA	0	[UPL]	1	25	4.8	4.0	4.4
Quercus alba	5	FAC	1	25	4.8	4.0	4.4
Rhus radicans	2	FAC+	1	25	4.8	4.0	4.4
Rubus allegheniensis	3	FACU+	1	25	4.8	4.0	4.4
					0		

Smilax tamnoides hispida 5 UPL SYMPHORICARPOS ORBICULATUS 0 FACU VIBURNUM DENTATUM 0 UPL 2	1 1 1 21	25 - 25 25 625	4.8 4.8 4.8	$4.0 \\ 4.0 \\ 4.0 \\ 4.0$	4.4 4.4 4.4
---	-------------------	-------------------------	-------------------	----------------------------	-------------------

ACRONYM	C SCIENTIFIC NAME	W	WETNESS	PHY	SIOGNOMY	COMMON NAME
AGRGRY	2 Agrimonia gryposepala	2	FACU+	Nt :	P-Forb	TALL AGRIMONY
ALLPET	0 ALLIARIA PETIOLATA	0	FAC	Ad 1	B-Forb	GARLIC MUSTARD
ARITRI	4 Arisaema triphyllum	-2	FACW-	Nt 1	P-Forb	JACK-IN-THE-PULPIT
CIRLUC NIGHTSHADE	1 Circaea lutetiana canadensis	3	FACU	Nt	P-Forb	ENCHANTER 'S
FRAVIR	1 Fragaria virginiana	1	FAC-	Nt 1	P-Forb	WILD STRAWBERRY
GEUCAN	1 Geum canadense	0	FAC	Nt I	P-Forb	WOOD AVENS
HACVIR	0 Hackelia virginiana	1	FAC-	Nt H	B-Forb	STICKSEED
LONMAA	0 LONICERA MAACKII	5	UPL	Ad S	Shrub	AMUR HONEYSUCKLE
LONTAT HONEYSUCKLI	0 LONICERA TATARICA	5	[UPL]	Ad S	Shrub	TARTARIAN
PARQUI	2 Parthenocissus quinquefolia	1	FAC-	Nt Ø	V-Vine	VIRGINIA CREEPER
QUEALB	5 Quercus alba	0	FAC	Nt 7	Free	WHITE OAK
RHURAD	2 Rhus radicans	-1	FAC ÷	Nt V	∛-Vine	POISON IVY
RIBMIS	5 Ribes missouriense	5	UPL	Nt S	Shrub	WILD GOOSEBERRY
RUBALL	3 Rubus allegheniensis	2	FACU+	Nt S	Shrub	COMMON BLACKBERRY
SMITAH	5 Smilax tamnoides hispida	5	UPL	Nt W	∛-Vine	BRISTLY CAT BRIER
SYMORB	0 SYMPHORICARPOS ORBICULATUS	3	FACU	Ad S	Shrub	CORALBERRY
VIBDEN :	0 VIBURNUM DENTATUM	5	UPL	Ad S	Shrub	ARROW-WOOD

.

. •• . •

Site:	Goodenow Grove, Will County, Illinois
Locale:	Goodenow GD Shrub
Date:	June 4, 2004 Three hours
By:	Earth Tech
File:	c:\FQA\studies\BaselineReport\Goodenow Shrub D.tra

				TRAN	SECT DA	ATA, QUZ	ADRAT			
QUAD	MC	W/Ad	FQI	W/Ad	MW	W/Ad	NS	TS	MW SEO	W/Ad
1	2.7	2.1	7.2	6.3	2.1	2.6	7	9	2.4	2.9
2	2.9	2.1	8.1	6.9	2.8	3.2	8	11	2.6	2.9
3	2.9	2.9	7.6	7.6	2.9	2.9	7	7	3.2	3.3
4	3.0	2.5	6.7	6.1	4.0	3.8	5	6	3.4	3.3
AVG STD	2.9 0.1	2.4 0.4	7.4 0.6	6.7 0.6	2.9 0.8	3.1 0.5	6.8 1.3	8.3 2.2		

.

۰.

: -

. ...

	C 0 1 2 3 4 5 6 7 8 9 10	NUMBER 0 2 3 0 tc 1 54. 1 4 0 4 tc 0 4 tc 0 0 4 tc 0 0 8 tc 0 0.	5% 7 5%		11 NATIVE SPECIES 14 TOTAL SPECIES 3.2 NATIVE MEAN C 2.5 W/Adventives 10.6 NATIVE FQI 9.4 W/Adventives 2.4 NATIVE MEAN W 2.8 W/Adventives
Native	11	78.6%	Adventive	3	21.4%
Tree Shrub	6	42.9%	Tree	0	0.0%
	4	28.6%	Shrub	3	21.4%
W-Vine	1	7.1%	W-Vine	0	0.0%
H-Vine	0	0.0%	H-Vine	0	0.0%
P-Forb	0	0.0%	P-Forb	0	0.0%
B-Forb	0	0.0%	B-Forb	0	0.0%
A-Forb	0	0.0%	A-Forb	0	0.0%
P-Grass	0	0.0%	P-Grass	0	0.0%
A-Grass	0	0.0%	A-Grass	0	0.0%
P-Sedge	0	0.0%	P-Sedge	0	0.0%
A-Sedge	0	0.0%	A-Sedge	0	0.0%
Cryptogam	0	0.0%			

	PHYSIOGNOMIC	RELATIVE	IMPORTANC	E VALUES	
PHYSIOGNON	fY F	RQ CO'	V RFRQ	RCOV	RIV
Nt Tree		16 8	3 48.5	37.1	42.8
Nt Shrub		10 7	7 30.3	34.4	32.3
Ad Shrub		6 63	3 18.2	28.1	23.2
Nt W-Vine		1	1. 3.0	0.4	1.7

SPECIES	RELAT	IVE IMPOR	TANCE VA	LUES			
SCIENTIFIC NAME	С	WETNESS	FRQ	COV	RFRO	RCOV	RIV
Ribes missouriense	5	UPL	4	56	12.1	25.0	18.6
VIBURNUM DENTATUM	0	UPL	2	50	6.1	22.3	14.2
Crataegus mollis	2	FACU-	4	28	12.1	12.5	12.3
Prunus serotina	1	FACU	4	21	12.1	9.4	10.7
Fraxinus pennsysubintegerrima	1	FAC	3	26	9.1	11.6	10.3
ROSA MULTIFLORA	0	FACU	- 3	12	9.1	5.4	7.2
Rubus allegheniensis	3	FACU+	2	15	6.1	6.7	6.4
Rubus occidentalis	2	UPL	· 3	5	9.1	2.2	5.7
Ulmus rubra	4	FAC	2	5	6.1	2.2	4.1
Carya ovata	5	FACU	2	2	6.1	0.9	3.5
LONICERA TATARICA	0	[UPL]	1	1	3.0	0.4	1.7
Tilia americana	5	FACU	1	1	3.0	0.4	1.7
Viburnum prunifolium	5	FACU	1	1	3.0	0.4	1.7
Vitis riparia	2	FACW-	1	1	3.0	0.4	1.7
			33	224			

ACRONYM	C SCIENTIFIC NAME	W WETNESS	PHYSIOGNOM	Y COMMON NAME
CAROVT	5 Carya ovata	3 FACU	Nt Tree	SHAGBARK HICKORY
CRAMOL	2 Crataegus mollis	4 FACU-	Nt Tree	DOWNY HAWTHORN
FRAPES	1 Fraxinus pennsylvanica subintegerrima	0 FAC	Nt Tree	GREEN ASH
LONTAT HONEYSUCKI	0 LONICERA TATARICA	5 (UPL)	Ad Shrub	TARTARIAN
PRUSER	1 Prunus serotina	3 FACU	Nt Tree	WILD BLACK CHERRY
RIBMIS	5 Ribes missouriense	5 UPL	Nt Shrub	WILD GOOSEBERRY
ROSMUL	0 ROSA MULTIFLORA	3 FACU	Ad Shrub	MULTIFLORA ROSE
RUBALL	3 Rubus allegheniensis	2 FACU+	Nt Shrub	COMMON BLACKBERRY
RUBOCC	2 Rubus occidentalis	5 UPL	Nt Shrub	BLACK RASPBERRY
TILAME	5 Tilia americana	3 FACU	Nt Tree	AMERICAN LINDEN
ULMRUB	4 Ulmus rubra	0 FAC	Nt Tree	SLIPPERY ELM
VIBDEN	0 VIBURNUM DENTATUM	5 UPL	Ad Shrub	ARROW-WOOD
VIBPRU	5 Viburnum prunifolium	3 FACU	Nt Shrub	BLACK HAW
VITRIP	2 Vitis riparia	~2 FACW-	Nt W-Vine	RIVERBANK GRAPE

. .

. •• . •

Site: Locale: Date: By: File:	Goode June Earth	now Grov now Tran 4, 2004 Tech A\studie	sect D Four	, Tree H hours	lot		Trans	sect	D, T	ree P	lot.tr	a	-	
				TRAN	ISECT I	DATA,	QUADR	ΑT						
QUAD	MC	W/Ad	FQI	W/Ad	MW	W/A		٧S	TS	MW	SEQ	W/Ad		
1	2.7	2.7	4.6	4.6	2.3	2.		3	3		2.0	2.0		
2	4.0	4.0	6.9	6.9	1.7	1.		3	3		1.8	1.8		
3 4	3.3	3.3	5.8	5.8	1.3	1.		3	3		1.5	1.5		
4	3.8	3.8	7.5	7.5	1.5	1.	5	4	4		1.4	1.4		
AVG STD	3.4 0.6	3.4 0.6	6.2 1.3	6.2 1.3	1.7 0.4	1. 0.		. 3 . 5	3.3 0.5					
	С	NUMBE	R							ECIES				
	0	0							SPE					
	1 2	2	0				3.6 N							
	∠ 3		0 to 3				3.6			ntive	s			
	5 4	0 1	37.5%				10.3 N							
	5	3					10.3 2.0 N			ntive	5			
	6		4 to 7				2.0 1			ntives	-			
	7	0	62.5%				2.0	,	Auver	icive:	5			
	8	0												
	9	08	to 10											
	10	0	0.0%											
			_											
Native Tree	8	100.0		Adventi	ve	0	0.0%							
Shrub	8 0	100.0		Tree		0	0.0%							
W-Vine	0	0.0		Shrub W-Vine		0 0	0.0%							
H-Vine	Ő	0.0		H-Vine		0	0.0% 0.0%							
P-Forb	Ō	0.09		P-Forb		0	0.0%							
B-Forb	. 0	0.09		B-Forb		0 0	0.0%							
A-Forb	. 0	0.09		A-Forb		0	0.0%							
P-Grass	: 0	0.09	È.	P-Grass		0	0.0%							
A-Grass	0	0.09		A-Grass		0	0.0%							
P-Sedge	0.	0.09		P-Sedge		0	0.0%							
A-Sedge	Ö	0.09		A-Sedge		0	0.0%							
Cryptogam	0	0.09	6											
	PHYSIO	GNOMIC F	RELATIV	E IMPOR	TANCE	VALUES								
PHYSIOGNON		FRC			FRQ	RCOL		IV						
Nt Tree		13			0.0	100.0								
007 5175 55		••	SPECIE	S RELAT										
SCIENTIFIC					WETNE:	SS	FRQ	CO		RFRQ	RCOV	RIV		
Quercus al					FAC		3	1		3.1	40.9	32.0		
Prunus ser Ulmus rubr					FACU		3			3.1	13.6	18.4		
Quercus ma		na			FAC FAC-		2			5.4	13.6	14.5		
Tilia amer		Pa			FAC- FACU		1 1			7.7 7.7	20.5 4.5	14.1 6.1		
Crataegus					FACU-		1			7.7	2.3	5.0		
Fraxinus p			egerri		FAC		1			7.7	2.3	5.0		
Quercus ve			-		UPL		1			7.7	2.3	5.0		
							13	4						
20000000	0 007													
ACRONYM	C SCI	ENTIFIC	NAME					(WET	NESS	PHYSI	OGNOMY	COMMON	NAME
CRAMOL	2 Crai	taegus m								**			max	
CUMIQU	~ Crdi	caeyus M	01112						4 FAC	U-	Nt Tr	ee	DOWNY	HAWTHORN
FRAPES	1 Fray	xinus pe	nnsvlv	anica s	binter	verrim	a) FAC		Ntr 00~	.00	יאמינוסי	ACU
20		Pe			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	اللللتو	u	,	J FAC		Nt Tr	ee	GREEN	ASH

3 FACU

0 FAC

Nt Tree

Nt Tree

WILD BLACK CHERRY

WHITE OAK

PRUSER

QUEALB

l Prunus serotina

5 Quercus alba

QUEMAC	5 Quercus macrocarpa	1 FAC-	Nt Tree	BUR OAK
QUEVEL	6 Quercus velutina	5 UPL	Nt Tree	BLACK OAK
TILAME	5 Tilia americana	3 FACU	Nt Tree	AMERICAN LINDEN
ULMRUB	4 Ulmus rubra	0 FAC	Nt Tree	SLIPPERY ELM

•

		٦,	

_

Raccoon Grove Nature Preserve Bird Plots

Site:	Racoon Grove, Will County, Illinois
Locale:	Raccoon Grove RA Herbaceous Plot
Date:	June 3, 2004 Four hours
By:	Earth Tech
File:	c:\FQA\studies\BaselineReport\RGTransectA.tra

				TRAI	SECT D	ATA, QU	ADRAT			
QUAD	MC	W/Ad	FQI	W/Ad	MW	W/Ad	NS	TS	MW SEQ	W/Ad
1	2.8	2.8	5.5	5.5	1.8	1.8	4	4	2.4	2.4
2	7.0	7.0	9.9	9.9	3.0	3.0	2	2	1.7	1.7
3	4.3	3.4	8.5	7.6	0.5	0.4	4	5	1.0	1.0
4	4.0	4.0	13.3	13.3	-0.4	-0.4	11	11	-0.0	-0.1
5	3.4	3.4	7.6	7.6	-0.2	-0.2	5	5	-0.6	-0.6
6	2.8	2.8	6.9	6.9	-1.3	-1.3	6	6	-0.3	-0.3
7	2.5	2.5	6.1	6.1	0.5	0.5	6	6	-0.4	-0.4
AVG	3.8	3.7	8.3	8.1	0.6	0.5	5.4	5.6		
STD	1.5	1.5	2.7	2.7	1.4	1.4	2.8	2.8		

С	NUMBER	26 NATIVE SPECIES
0	0	27 TOTAL SPECIES
1	4	3.5 NATIVE MEAN C
2	6 0 to 3	3.3 W/Adventives
3	4 53.8%	17.7 NATIVE FQI
4	б	17.3 W/Adventives
5	2	-0.3 NATIVE MEAN W
6	0 4 to 7	-0.3 W/Adventives
7	4 46.2%	
8	0	
9	0 8 to 10	
10	0 0.0%	

3.7%

0	1	0	0.0%	
26		96.3%		Adventive

Native

Tree	2	7.4%	Tree	0	0.0%	
Shrub	0	0.0%	Shrub	0	0.0%	
W-Vine	2	7.4%	W-Vine	0	0.0%	
H-Vine	0	0.0%	H-Vine	0	0.0%	
P-Forb	17	63.0%	P-Forb	0	0.0%	:
B-Forb	0	0.0%	B-Forb	1	3.7%	
A-Forb	2	7.48	A-Forb	0	0.0%	
P-Grass	3	11.1%	P-Grass	0	0.0%	•
A-Grass	0	0.0%	A-Grass	0	0.0%	
P-Sedge	0	0.0%	P-Sedge	0	0.0%	
A-Sedge	0	0.0%	A-Sedge	0	0.0%	
Cryptogam	0	0.0%				

	PHYSIOGNOMIC	RELATIVE	IMPORTAN	CE VALUES	
PHYSIOGNOM	Y FR	Q COV	J RFRQ	RCOV	RIV
Nt P-Forb	2	7 110	69.2	73.8	71.5
Nt W-Vine		3 11	L 7.7	7.4	7.5
Nt A-Forb		3 10) 7.7	6.7	7.2
Nt P-Grass		3 9	7.7	6.0	6.9
Nt Tree		26	5 5.1	4.0	4.6
Ad B-Forb		1 3	3 2.6	2.0	2.3

SPECIES RELATIVE IMPORTANCE VALUES								
SCIENTIFIC NAME	C	WETNESS	FRQ	COV	RFRQ	RCOV	RIV	
Allium cernuum	7	[FAC-]	4	15	9.8	9.3	9.5	
Cryptotaenia canadensis	2	FAC	3	13	7.3	8.1	7.7	
Circaea lutetiana canadensis	1	FACU	3	10	7.3	6.2	6.8	
Geranium maculatum	4	[UPL]	2	12	4.9	7.5	6.2	
SOIL	0		2	12	4.9	7.5	6.2	
Asarum canadense	7	UPL	2	11	4.9	6.8	5.9	
Sanicula gregaria	2	FAC+	2	10	4.9	6.2	5.5	
Rhus radicans	2	FAC+	2	8	4.9	5.0	4.9	
Impatiens capensis	3	FACW	2	6	4.9	3.7	4.3	
Podophyllum peltatum	4	FACU	1	7	2.4	4.3	3.4	
Bidens frondosa	1	FACW	1	4	2.4	2.5	2.5	
Laportea canadensis	3	FACW	1	4	2.4	2.5	2.5	

ALLIARIA Arisaema Aster lat. Boehmeria Cinna arun Fraxinus y Geum canac Glyceria s Hydrophyl Leersia v: Parthenoc:	dracontium triphyllum eriflorus cylindrica ndinacea pennsysubintegerrima dense striata lum virginianum irginica .ssus quinquefolia virginianum a simplex	 3 FACU 0 PAC 7 FACW 4 FACW- 2 OBL 5 FACW 1 FAC 1 FAC 1 FAC 4 [FACW] 5 [FAC] 7 FACW 2 FAC- 2 FAC 4 FACU- 3 FACW- 	1 1 1 1 1 1 1 1 1 1 1 1 41 1	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 . 4 2 . 4	1.9 2 1.9 2 1.9 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
ACRONYM	C SCIENTIFIC NAME			W WETN	IESS P	HYSIOGNOM	IY COMMON NAME
ALLPET	0 ALLIARIA PETIOLATA			0 FAC	A	d B-Forb	GARLIC MUSTARD
ALLCER	7 Allium cernuum			1 [FAC	:-] N	t P-Forb	NODDING WILD ONION
ARIDRA	7 Arisaema dracontium			-3 FACW	n N	t P-Forb	GREEN DRAGON
ARITRI	4 Arisaema triphyllum			-2 FACW	- N	t P-Forb	JACK-IN-THE-PULPIT
ASACAN	7 Asarum canadense			5 UPL	N	t P-Forb	WILD GINGER
ASTLAT ASTER	4 Aster lateriflorus	10 10		-2 FACW	- N	t P-Forb	SIDE-FLOWERING
BIDFRO	1 Bidens frondosa			-3 FACW	N	t A-Forb	COMMON BEGGAR'S
BOECYC	2 Boehmeria cylindrica			-5 OBL	N	t P-Forb	FALSE NETTLE
CINARU	5 Cinna arundinacea			-3 FACW	N	t P-Grass	COMMON WOOD REED
CIRLUC	l Circaea lutetiana cana	densis		3 FACU	N	t P-Forb	ENCHANTER'S
NIGHTSHADE CRYCAN	2 Cryptotaenia canadensi	s	:	0 FAC	N	t P-Forb	HONEWORT
FRAPES	1 Fraxinus pennsylvanica	subintegerrim	i. a	0 FAC	N	t Tree	GREEN ASH
GERMAC	4 Geranium maculatum		•	5 (UPL] NI	t P-Forb	WILD GERANIUM
GEUCAN	1 Geum canadense			0 FAC		: P-Forb	WOOD AVENS
GLYSTR	4 Glyceria striata		-	-3 [FAC		: P-Grass	
HYDVIR	5 Hydrophyllum virginian	um		0 [FAC		P-Forb	VIRGINIA WATERLEAF
IMPCAP	3 Impatiens capensis			-3 FACW		A-Forb	
LAPCAN	3 Laportea canadensis		-	3 FACW		P-Forb	WOOD NETTLE
LEEVIR	7 Leersia virginica			3 FACW		P-Grass	
PARQUI	2 Parthenocissus quinque:	folía		1 FAC-		: W-Vine	VIRGINIA CREEPER
PODPEL	4 Podophyllum peltatum			3 FACU		P-Forb	MAY APPLE
POLCAL	3 Polygonatum canalicula	cum		3 FACU		P-Forb	
SEAL POLGVI	2 Polygonum virginianum			0 FAC			SMOOTH SOLOMON'S
POTSIS	4 Potentilla simplex			4 FACU-		P-Forb	WOODLAND KNOTWEED
RHURAD	2 Rhus radicans					P-Forb	COMMON CINQUEFOIL
SANGRE	2 Sanicula gregaria			1 FAC+		W-Vine	POISON IVY
SNAKEROOT	2 cuntoura greyalia		~	1 FAC÷	NE	P-Forb	CLUSTERED BLACK

SOIL	0 SOIL	0 nil	nil	SOIL
ULMAME	3 Ulmus americana	-2 FACW-	Nt Tree	AMERICAN ELM

.

.

.

Site: Locale: Date: By: File:	Raccoo June 3 Earth	Grove, (n RA Shrv , 2004 Tech \studies'	ub Plo two ł	ot nours			hrub A	.tra			
QUAD 1 2 3 4 5 6 7	MC 1.0 3.0 2.0 4.3 3.5 3.5 1.7	W/Ad 1.0 3.0 2.0 4.3 2.3 3.5 1.0	FQI 1.0 3.0 2.0 7.5 4.9 4.9 2.9	TRANS W/Ad 1.0 3.0 2.0 7.5 4.0 4.9 2.2	SECT E MW 3.0 3.0 4.0 2.7 4.0 3.5 0.7	DATA, Q W/Ad 3.0 4.0 2.7 3.7 3.5 1.6	NS 1 1 3	TS 1 1 3 3 2 5		SEQ 3.0 3.3 3.2 3.6 3.4 2.7 2.1	W/Ad 3.0 3.3 3.2 3.4 3.3 2.9 2.5
AVG STD	2.7 1.2	2.5 1.2	3.8 2.2	3.5 2.2	3.0 1.1	3.1 0.8	1.9 0.9	2.3 1.5			
	C 0 1 2 3 4 5 6 7 8 9 10	2 6 0 3 4 0 3 0 3 0 8 t	to 3 6.7% to 7 3.3% o 10 0.0%			4	11 TOT 3.0 NAT 2.5 9.0 NAT 3.1 2.2 NAT	V/Adve W/Adve VVE FQ W/Adve	ECIES EAN C entive QI entive EAN W	s	
Native Tree Shrub W-Vine H-Vine P-Forb B-Forb A-Forb P-Grass A-Grass P-Sedge A-Sedge Cryptogam	9 6 2 1 0 0 0 0 0 0 0 0 0	81.8% 54.5% 18.2% 9.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0		Adventiv Tree Shrub W-Vine H-Vine P-Forb B-Forb A-Forb P-Grass A-Grass P-Sedge A-Sedge	e	0	8.28 0.08 8.28 0.08 0.08 0.08 0.08 0.08				
PHYSIOGNOM Nt Tree Nt W-Vine Ad Shrub Nt Shrub		NOMIC RE FRQ 10 1 3 2	C	OV RF 29 62	RQ .5 .3 .8	VALUES RCOV 63.0 21.7 6.5 8.7	RIV 62.8 14.0 12.6 10.6				
SCIENTIFIC Acer sacch Crataegus r Vitis ripan Carya ovata ROSA MULTI Rubus allee Fraxinus pe Fraxinus pe Prunus sero Ostrya viro RHAMNUS CAT Viburnum pr	arum nollis ria FLORA ghenien ennsy otina giniana FHARTIC	sis .subinteç A		3 1 2 1 2 1 5 1 3 1 3 1 1 1 5 1 5 1 0 1	VE IME WETNES FACU FACU- FACU- FACU FACU FACU FACU FACU- FACU FACU- FACU FACU	3S F		COV 18 4 10 2	RFRQ 6.3 25.0 6.3 12.5 12.5 6.3 6.3 6.3 6.3 6.3 6.3	RCOV 39.1 8.7 21.7 4.3 4.3 6.5 4.3 4.3 2.2 2.2 2.2 2.2	RIV 22.7 16.8 14.0 8.4 6.4 5.3 5.3 5.3 4.2 4.2 4.2

.

ACRONYM	C SCIENTIFIC NAME	W WETNESS	PHYSIOGNOM	Y COMMON NAME
ACESAU	3 Acer saccharum	3 FACU	Nt Tree	SUGAR MAPLE
CAROVT	5 Carya ovata	3 FACU	Nt Tree	SHAGBARK HICKORY
CRAMOL	2 Crataegus mollis	4 FACU-	Nt Tree	DOWNY HAWTHORN
FRAPES	1 Fraxinus pennsylvanica subintegerrima	0 FAC	Nt Tree	GREEN ASH
OSTVIR	5 Ostrya virginiana	4 FACU-	Nt Tree	HOP HORNBEAM
PRUSER	1 Prunus serotina	3 FACU	Nt Tree	WILD BLACK CHERRY
RHACAT	0 RHAMNUS CATHARTICA	3 FACU	Ad Shrub	COMMON BUCKTHORN
ROSMUL	0 ROSA MULTIFLORA	3 FACU	Ad Shrub	MULTIFLORA ROSE
RUBALL	3 Rubus allegheniensis	2 FACU+	Nt Shrub	COMMON BLACKBERRY
VIBPRU	5 Viburnum prunifolium	3 FACU	Nt Shrub	BLACK HAW
VITRIP	2 Vitis riparia	-2 FACW-	Nt W-Vine	RIVERBANK GRAPE

.

. .

•

Site: Locale: Date: By: File:	Racco June Earth	on Grove on Grove 3, 2004 Tech A\studie	RA Tre Six P	e Plot Nours			ansect	A Tre	e Plo	ot.tra			
QUAD	NO					DATA, QU	ADRAT						
QUAD 1	МС 4.3	W/Ad 4.3	FQI 7.5	W/Ad 7.5	MW 2.7	W/Ad	NS	TS	MW	SEQ	W/Ad		
2	4.0	4.0	5.7	5.7	3.5	2.7 3.5	3 2	3 2		3.1	3.1		
3	2.7	2.7	4.6	4.6	2.7	2.7	3	23		2.9 2.9	2.9 2.9		
4	5.0	5.0	10.0	10.0	2.5	2.5	4	4		2.8	2.8		
5	4.0	4.0	6.9	6.9	3.3	3.3	3	3		1.9	1.9		
6 7	4.0 1.5	4.0 1.5	5.7 2.1	5.7	0.0	0.0	2	2		1.8	1.8		
,	1.9	1.5	2.1	2.1	2.0	2.0	2	2		1.0	1.0		
AVG STD	3.6	3.6	6.1	6.1	2.4	2.4	2.7	2.7					
510	1.2	1.2	2.5	2.5	1.2	1.2	0.8	0.8					
	С	NUMBE:	R				9 NAT:	IVE SP	ECIES				
	0 1	0					9 TOT2						
	2	1	0 to 3				.1 NAT:						
	3	1	33.38				.3 NAT:	∛/Adve IVE FO		S			
	4	0				12		V/Adve		s			
	5	5					.9 NAT:	IVE ME	AN W				
	6 7	1 4	1 to 7 66.7%			1	.9 1	V/Adve	ntive	s			
	8	0	00.75										
	9 10	0 8 0	to 10 0.0%										
Native	9	100.09	k 1	Adventiv		0	9.0%						
Tree	8	88.99		Free			0.08 0.08						
Shrub	1	11.19		Shrub			0.0%						
W-Vine	0	0.08		N-Vine			0.0%						
H-Vine P-Forb	0 0	0.0% 0.0%		l-Vine			0.08						
B-Forb	0	0.0%		P-Forb B-Forb).0%).0%						
A-Forb	0	0.08		A-Forb).08						
P-Grass	0	0.0%		?-Grass).0%						
A-Grass P-Sedge	0	0.0%		A-Grass).0%						
A-Sedge	0 0	0.0%		P-Sedge).0%						
Cryptogam	0	0.0%		-seage		0 ().0%						
	PHYSIO	SNOMIC R	ELATIVE	IMPORT	ANCE	VALUES							
PHYSIOGNOM	ÍY	FRQ	CC	V RF	RQ	RCOV	RIV						
Nt Tree Nt Shrub		17	-		.5	92.0	90.7						
NC SHIUD		2		6 10	.5	8.0	9.3						
			SPECIES	RELATI	VE TM	PORTANCE		c					
SCIENTIFIC	NAME				WETNES				FRO	RCOV	RIV	,	
Ostrya vir		L		5	FACU-				5.8	24.0			
Crataegus					FACU-		4		1.1	12.0			
Fraxinus p Acer sacch		.subint	egerrım		FAC				0.5	13.3			
Quercus ma		a			FACU FAC-		2 2		0.5	12.0			
Viburnum p	runifol				FACU		2	_	0.5	10.7 8.0	10.6 9.3		
Carya ovat					FACU		2		0.5	6.7	8:6		
Quercus bi Juglans ni					FACW+		1		5.3	9.3	7.3		
Sugrais III	yra			5	FACU	1	1 9 ·	3 75	5.3	4.0	4.6		
						Ŧ	J	2					
ACRONYM	C SCIE	NTIFIC 1	NAME					W WET	NESS	PHYSI	LOGNOMY	COMMON	NAME
ACESAU	3 Acer	sacchai	rum					3 FAC	U	Nt Ti	cee	SUGAR M	APLE

. -

. •• . •

CAROVT	5 Carya ovata	3 FACU	Nt Tree	SHAGBARK HICKORY
CRAMOL	2 Crataegus mollis	4 FACU-	Nt Tree	DOWNY HAWTHORN
FRAPES	l Fraxinus pennsylvanica subintegerrima	0 FAC	Nt Tree	GREEN ASH
JUGNIG	5 Juglans nigra	3 FACU	Nt Tree	BLACK WALNUT
OSTVIR	5 Ostrya virginiana	4 FACU-	Nt Tree	HOP HORNBEAM
QUEBIC	6 Quercus bicolor	-4 FACW+	Nt Tree	SWAMP WHITE OAK
QUEMAC	5 Quercus macrocarpa	1 FAC-	Nt Tree	BUR OAK
VIBPRU	5 Viburnum prunifolium	3 FACU	Nt Shrub	BLACK HAW

.

· ·

Site: Locale: Date:	Raccoon Grove, Will County, Illinois Raccoon Grove RB Herbacéous Plot June 4, 2004 Four hours
By:	EarthTech
File:	c:\FQA\studies\SSA\RGTransectB.tra

				TRAI	NSECT D	ATA, QU	ADRAT			
QUAD	MC	W/Ad	FQI	W/Ad	MW	W/Ad	NS	TS	MW SEQ	W/Ad
1	3.0	3.0	4.2	4.2	-1.5	-1.5	2	2	-0.1	-0.1
2	3.5	3.5	9.9	9.9	1.4	1.4	8	8	0.5	0.5
3	4.3	4.3	10.6	10.6	1.5	1.5	6	6	1.2	1.2
4	2.9	2.9	8.1	8.1	0.8	0.8	8	8	1.1	1.1
AVG STD	3.4 0.7	3.4 0.7	8.2 2.9	8.2 2.9	0.5 1.4	0.5 1.4	6.0 2.8	6.0 2.8		

15 NATIVE SPECIES 15 TOTAL SPECIES 3.6 NATIVE MEAN C 3.6 W/Adventives 13.9 NATIVE FQI 13.9 W/Adventives 0.9 NATIVE MEAN W 0.9 W/Adventives

С	NUMBER	
0	0	
1	2	
2	4 0 to 3	
3	2 53.3%	
4	3	
5	1	
6	0 4 to 7	
7	3 46.7%	
8	0	
9	0 8 to 10	
10	£0.0	
15	100.0%	Adventive
1	6 79	Troo

Native

Native	15	100.0%	Adventive	0	0.0%
Tree	1	6.7%	Tree	0	0.0%
Shrub	0	0.0%	Shrub	0	0.0%
W-Vine	2	13.3%	W-Vine	0	0.0%
H-Vine	0	0.0%	H-Vine	0	0.0%
P-Forb	9	60.0%	P-Forb	0	0.0%
B-Forb	0	0.0%	B-Forb	0	0.0%
A-Forb	2	13.3%	A-Forb	0	0.0%
P-Grass	1	6.7%	P-Grass	0	0.0%
A-Grass	0	0.0%	A-Grass	0	0.0%
P-Sedge	0	0.0%	P-Sedge	0	0.0%
A-Sedge	0	0.0%	A-Sedge	0	0.0%
Cryptogam	0	0.0%			

		PHYSIOGNOMIC	REL	ATIVE IMP	PORTANCE	VALUES	
PH	YSIOGNOM	ry f	'RQ	COV	RFRQ	RCOV	RIV
Nt	P-Forb		16	750	66.7	73.2	69.9
Nt	W-Vine		4	150	16.7	14.6	15.7
Nt	A-Forb		2	50	8.3	4.9	6.6
Nt	P-Grass		1	50	4.2	4.9	4.5
Nt	Tree		1	25	4.2	2.4	3.3

SPECIES	RELATIVE IMPOR	TANCE VA	LUES			
SCIENTIFIC NAME	C WETNESS	FRQ	COV	RFRQ	RCOV	RIV
Geranium maculatum	4 [UPL]	3	125	12.0	11.1	11.6
Parthenocissus quinquefolia	2 FAC-	3	125	12.0	11.1	11.6
Sanicula gregaria	2 FAC+	3	100	12.0	8.9	10.4
Arisaema triphyllum	4 FACW-	2	100	8.0	8.9	8.4
Cryptotaenia canadensis	2 FAC	2	100	8.0	8.9	8.4
Asarum canadense	7 UPL	1	100	4.0	8.9	6.4
Laportea canadensis	3 FACW	1	100	4.0	8.9	6.4
SOIL	0	1	100	4.0	8.9	6.4
Allium cernuum	7 [FAC-]	2	50	8.0	4.4	6.2
Anemonella thalictroides	7 UPL	1	50	4.0	4.4	4.2
Elymus virginicus	4 FACW-	1	50	4.0	4.4	4.2
Circaea lutetiana canadensis	1 FACU	1	25	4.0	2.2	3.1
Galium aparine	1 FACU	1	25	4.0	2.2	3.1
Impatiens capensis	3 FACW	1	25	4.0	2.2	3.1
Rhus radicans	2 FAC+	1	25	4.0	2.2	3.1
Tilia americana	5 FACU	1	25	4.0	2,2	3.1

ACRONYM	C SCIENTIFIC NAME	W WETNESS PHYSIOGNOMY COMMON NAME	
ALLCER	7 Allium cernuum	1 [FAC-] Nt P-Forb NODDING WILD ONION	NC
ANETHA	7 Anemonella thalictroides	5 UPL Nt P-Forb RUE ANEMONE	
ARITRI	4 Arisaema triphyllum	-2 FACW- Nt P-Forb JACK-IN-THE-PULPIT	IT
ASACAN	7 Asarum canadense	5 UPL Nt P-Forb WILD GINGER	
CIRLUC NIGHTSHADF	1 Circaea lutetiana canadensis	3 FACU Nt P-Forb ENCHANTER'S	
CRYCAN	2 Cryptotaenia canadensis	0 FAC Nt P-Forb HONEWORT	
ELYVIR	4 Elymus virginicus	-2 FACW- Nt P-Grass VIRGINIA WILD RYE	Е
GALAPA	1 Galium aparine	3 FACU Nt A-Forb ANNUAL BEDSTRAW	
GERMAC	4 Geranium maculatum	5 [UPL] Nt P-Forb WILD GERANIUM	
IMPCAP	3 Impatiens capensis	-3 FACW Nt A-Forb ORANGE JEWELWEED	
LAPCAN	3 Laportea canadensis	-3 FACW Nt P-Forb WOOD NETTLE	
PARQUI	2 Parthenocissus quinquefolia	1 FAC- Nt W-Vine VIRGINIA CREEPER	
RHURAD	2 Rhus radicans	-1 FAC+ Nt W-Vine POISON IVY	
SANGRE SNAKEROOT	2 Sanicula gregaria	-1 FAC+ Nt P-Forb CLUSTERED BLACK	
SOIL	0 SOIL	0 nil nil SOIL	
TILAME	5 Tilia americana	3 FACU Nt Tree AMERICAN LINDEN	

	Raccoon Grove, Will County, Illinois Raccoon RB Shrub Plot
Date:	June 4, 2004 Six hours
By:	Earth Tech
File:	c:\FQA\studies\BaselineReport\Raccoon Shrub B.tra

QUAD 1 2 3 4 AVG STD	MC 3.0 3.5 2.0 2.0 2.6 0.8	W/Ad FQ1 3.0 3.0 3.5 4.5 2.0 2.0 2.0 2.0 2.6 3.0 0.8 1.4	W/Ad 3.0 4.9 2.0 2.0 2.0	ECT D MW 3.0 3.5 4.0 4.0 3.6 0.5	ATA, QU2 W/Ad 3.0 3.5 4.0 4.0 3.6 0.5	ADRAT NS 1 2 1 1 1.3 0.5	TS 1 2 1 1 1.3 0.5	MW SEQ 3.2 3.5 3.8 4.0	W/Ad 3.2 3.5 3.8 4.0
Native Tree Shrub W-Vine H-Vine P-Forb	C 0 1 2 3 4 5 6 7 8 9 10 3 3 0 0 0 0	NUMBER 0 1 0 to 1 0 to 0 33.3 0 0 0 8 to 1 0 0.0% 100.0% 0.0%	3 % 7 		3. 3. 5. 3. 3. 3. 0000 0000 000000000000	3 NAT: 3 TOTZ 3 NAT: 8 NAT: 8 V 3 NAT: 3 V .0% .0% .0% .0%	0.5 IVE SPE IVE MEA V/Adven IVE FQI V/Adven	TIES N C Itives tives N W	
B-Forb A-Forb P-Grass A-Grass P-Sedge A-Sedge Cryptogam		0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	P-Forb B-Forb A-Forb P-Grass A-Grass P-Sedge A-Sedge		0 0. 0 0. 0 0. 0 0.	08 08 08 08 08 08 08 08			

٠,

•

.

DOWNY HAWTHORN

	SIOGNOMIC R	ELATIVE	IMPORTANCE	VALUES	
PHYSIOGNOMY	FRQ	COV	RFRQ	RCOV	RIV
Nt Tree	5	8	100.0	100.0	100.0

SCIENTIFI Crataegus Acer sacc: Carya ova	C NAME mollis harum	RELATIVE IMPORT C WETNESS 2 FACU- 3 FACU 5 FACU	ANCE VA FRQ 3 1 1 5	LUES COV 4 3 1 8	RFRQ 60.0 20.0 20.0	RCOV 50.0 37.5 12.5	RIV 55.0 28.8 16.3	
ACRONYM	C SCIENTIFIC NAME			WV	VETNESS	PHYSIC	GNOMY	COMMON NAME
ACESAU	3 Acer saccharum			3 F	ACU	Nt Tre	e	SUGAR MAPLE
CAROVT	5 Carya ovata			3 F	ACU	Nt Tre	e	SHAGBARK HICKORY

		3 FACU	Nt Tree
CRAMOL	2 Crataegus mollis	4 FACU-	Nt Tree

Site:	Raccoon Grove, Will County, Illinois
Locale:	Raccoon Grove RB, Tree Plot
Date:	June 3, 2004 Four hours
By:	Earth Tech
File:	C:\FQA\studies\BaselineReport\Raccoon Transect B Tree Plot.tra
	TRANSECT DATA, QUADRAT

				11010			nonni			
QUAD	MC	W/Ad	FQI	W/Ad	MW	W/Ad	NS	TS	MW SEQ	W/Ad
1	4.0	4.0	5.7	5.7	3.0	3.0	2	2	2.5	2.5
2	4.0	4.0	6.9	6.9	2.0	2.0	3	3	2.7	2.7
3	5.0	5.0	7.1	7.1	3.0	3.0	2	2	2.4	2.4
4	2.7	2.7	4.6	4.6	2.3	2.3	3	3	2.7	2.7
AVG STD	3.9 1.0	3.9 1.0	6.1 1.2	6.1 1.2	2.6 0.5	2.6 0.5	2.5	2.5		

	С	NUMBER			7 N	JATIVE SPECIES
	0	0			7 T	TOTAL SPECIES
	1	1			3.6 N	JATIVE MEAN C
	2	1 0 to	3		3.6	W/Adventives
	3	1 42.	9%		9.4 N	ATIVE FOI
	4	1			9.4	W/Adventives
	5	3			2.3 N	ATIVE MEAN W
	6	0 4 to	7		2.3	W/Adventives
	7	0 57.	1%			
	8	0				
	9	0 8 to	10			
	10	00.	0%			
Native	7	100.0%	Adventive	0	0.0%	i
Tree	7	100.0%	Tree	0	0.0%	5
Shrub	0	0.0%	Shrub	0	0.0%	5
W-Vine	0	0.0%	W-Vine	0	0.0%	1
H-Vine	0	0.0%	H-Vine	0	0.0%	;

1166	/	100.04	Tree	0	0.0%
Shrub	0	0.0%	Shrub	0	0.0%
W-Vine	0	0.0%	W-Vine	0	0.0%
H-Vine	0	0.0%	H-Vine	0	0.0%
P-Forb	0	0.0%	P-Forb	0	0.0%
B-Forb	0	.0.0%	B-Forb	0	0.0%
A-Forb	0	0.0%	A-Forb	0	0.0%
P-Grass	0	0.0%	P-Grass	0	0.0%
A-Grass	0	0.0%	A-Grass	0	0.0%
P-Sedge	0	0.0%	P-Sedge	0	0.0%
A-Sedge	0	0.0%	A-Sedge	0	0.0%
Cryptogam	0	0.0%			

	PHYSIOGNOMIC	RELATIV	E IMP	ORTANCE	VALUES	
PHYSIOGNOM	IY FI	RQ C	ov	RFRQ	RCOV	RIV
Nt Tree	:	10	38	100.0	100.0	100.0

SPECIES.R	ELAT	IVE IMPORT	ANCE VA	LUES			
SCIENTIFIC NAME .	Ċ	WETNESS	FRQ	COV	RFRQ	RCOV	RIV
Tilia americana	5	FACU	3	16	30.0	42.1	36.1
Acer saccharum	3	FACU	2	6	20.0	15.8	17.9
Fraxinus pennsysubintegerrima	1	FAC	1	6	10.0	15.8	12.9
Carya ovata	5	FACU	1	5	10.0	13.2	11.6
Crataegus mollis	2	FACU-	1	2	10.0	5.3	7.6
Fraxinus americana	5	FACU	1	2	10.0	5.3	7.6
Ulmus rubra	4	FAC	1	1	10.0	2.6	6.3
			10	38			

ACRONYM	C SCIENTIFIC NAME	W WETNESS	PHYSIOGNOM	COMMON NAME
ACESAU	3 Acer saccharum	3 FACU	Nt Tree	SUGAR MAPLE
CAROVT	5 Carya ovata	3 FACU	Nt Tree	SHAGBARK HICKORY
CRAMOL	2 Crataegus mollis	4 FACU-	Nt Tree	DOWNY HAWTHORN
FRAAMA	5 Fraxinus americana	3 FACU	Nt Tree	WHITE ASH

FRAPES	l Fraxinus pennsylvanica subintegerrima	0 FAC	Nt Tree	GREEN ASH
TILAME	5 Tilia americana	3 FACU	Nt Tree	AMERICAN LINDEN
ULMRUB	4 Ulmus rubra	0 FAC	Nt Tree	SLIPPERY ELM

•

.

Monee Reservoir Bird Plots

Site: Locale: Date: By:	Monee Reservoir, Will County, Illinois Monee Grassland Transects A and B June 3, 2004 Four hours
By:	Earth Tech

				TRAN	SECT D	ልጥል በበል	DRAT			
QUAD	MC	W/Ad	FQI	W/Ad	MW	W/Ad	NS	TS	MW SEQ	W/Ad
1	0.0	0.0	0.0	0.0	0.0	-0.2	0	4	0.0	-2.1
2	0.0	0.0	0.0	0.0	0.0	-4.0	0	1	0.0	-1.2
3	0.0	0.0	0.0	0.0	0.0	0.5	0	2	0.3	-0.5
4	5.0	2.5	5.0	3.5	1.0	2.0	1	2	0.5	1.2

File: c:\FQA\studies\BaselineReport\MoneeTranA&B.tra

							-	2	0.
AVG	1.3	0.6	1.3	0.9	0.3	-0.4	0.3	2.3	
STD	2.5	1.3	2.5	1.8	0.5	2.6	0.5	1.3	
	6		_						
	С	NUMBE	R				1 NAT	IVE SPEC	TES
	0	0						AL SPECI	
	1	0				F			
	2	-	0 to 3					IVE MEAN	-
		-	0 00 0			0.	.7 V	V/Advent	ives
	3	0	0.0%			5.	0 NATI	IVE FOI	
	4	0				1.	9 1	/Advent	iver
	5	1				1.		IVE MEAN	
	6	0	4 to 7						
		-				1.	1 6	∛/Advent	ives
	7	0	100.0%						

-	0
2	0 0 to 3
3	0 0.0%
4	0
5	1
6	0 4 to 7
7	0 1.00.0%
8	0
9	0 8 to 10
10	0 0.0%

Native Tree Shrub W-Vine H-Vine P-Forb B-Forb A-Forb P-Grass A-Grass P-Sedge A-Sedge Cryptogam		14.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 14.3% 0.0% 0.0% 0.0% 0.0%	Adventive Tree Shrub W-Vine H-Vine P-Forb B-Forb A-Forb P-Grass A-Grass P-Sedge A-Sedge	6 0 0 2 1 0 3 0 0 0	85.7% 0.0% 0.0% 28.6% 14.3% 0.0% 42.9% 0.0% 0.0% 0.0%
--	--	--	--	--	--

PHYSIOGNOMY Ad P-Grass Ad P-Forb Nt P-Grass	HYSIOGNOMIC FI	RQ C 5 3 2 1	OV F 50 <u>5</u> 00 2	RTANCE V RFRQ 55.6 22.2 11.1	RCOV 56.0 16.0	RIV 55.8 19.1 13.6
		1 1	00 1	1.1	16.0	13.6
Ad B-Forb		1	75 1	1.1	12.0	11.6

SPECIES R	ELATIVE IMPORT	ANCE VA	LUES			
SCIENTIFIC NAME	C WETNESS	FRQ	cov	RFRO	RCOV	RIV
PHALARIS ARUNDINACEA	0 FACW+	3	225	30.Õ	32.1	31.1
Andropogon gerardii	5 FAC-	1	100	10.0	14.3	12.1
POA PRATENSIS	0 FAC-	1	100	10.0	14.3	12.1
MELILOTUS ALBA	0 FACU	1	75	10.0	10.7	10.4
SOIL	0	1	75	10.0	10.7	10.4
TRIFOLIUM PRATENSE	0 UPL	1	75	10.0	10.7	10.4
AGROSTIS ALBA	0 FACW	1	25	10.0	3.6	6.8
CHRYSANTHEMUM LM PINNATIFIDUM	0 UPL	1	25	10.0	3.6	6.8
		10	700		5.0	0.0
ACRONYM C COTENUTETO NAME						

ACTOMIN	C SCIENTIFIC NAME	W WETNESS	PHYSIOGNOM	COMMON NAME
AGRALA	0 AGROSTIS ALBA	-3 FACW	Ad P-Grass	REDTOP
ANDGER	5 Andropogon gerardii	l FAC-	Nt P-Grass	BIG BLUESTEM GRASS

CHRLEP	0 CHRYSANTHEMUM LEUCANTHEMUM PINNATIFIDUM	5 UI	PL	Ad P-Fo	orb	OX-EYE DAISY	
MELALB	0 MELILOTUS ALBA	3 F7	ACU	Ad B-Fo	orb	WHITE SWEET C	LOVER
PHAARU	0 PHALARIS ARUNDINACEA	-4 F7	ACW+	Ad P-G	rass	REED CANARY G	RASS
POAPRA	0 POA PRATENSIS	1 F7	AC-	Ad P-Gi	rass	KENTUCKY BLUE	GRASS
SOIL	0 SOIL	0 ni	il :	nil		SOIL	
TRIPRA	0 TRIFOLIUM PRATENSE	5 UE	PL .	Ad P-Fo	orb	RED CLOVER	

.

.

.

Site:	Monee Reservoir, Will County, Illinois
Locale:	Monee MA Shrub Plot
Date:	June 3, 2004 Two hours
By:	Earth Tech
File:	c:\FQA\studies\BaselineReport\Monee Shrub A.tra

				TRAI	NSECT D	ATA, OU	ADRAT			
QUAD	MC	W/Ad	FQI	W/Ad	MW	W/Ad	NS	TS	MW SEO	W/Ad
1	0.0	0.0	0.0	0.0	0.0	0.0	0	0	0.0	0.0
2	3.5	3.5	4.9	4.9	-2.5	-2.5	2	2	-2.5	-2.5
AVG	1.8	1.8	2.5	2.5	-1.2	-1.2	1.0	1.0		
STD	2.5	2.5	3.5	3.5	1.8	1.8	1.4	1.4		
	С	NUMBE	ER				2 NAT:	IVE SPI	ECIES	
	0	1					2 TOT/	AL SPEC	TES	
	1	0				3		IVE MEA	-	
	2	0	0 to 3					V/Adver		
	3	0	50.0%			4		VE FOI		
	4	0				4		V/Adver		
	5	0						IVE MEA		
	~	-								

	4 5 6	0 30. 0 0 4 to			4.9 NATIVE FQI 4.9 W/Adventives -2.5 NATIVE MEAN W -2.5 W/Adventives	
	7	1 50.	.08			
	8	0				
	9	0 8 to	10			
	10	00.	. 0%			
Native	2	100.0%	Adventive	0	0.0%	
Tree	1	50.0%	Tree	0	0.0%	
Shrub	1	50.0%	Shrub	0	0.0%	
W-Vine	0	0.0%	W-Vine	0	0.0%	
H-Vine	0	0.0%	H-Vine	0	0.0%	
P-Forb	0	0.0%	P-Forb	0	0.0%	
B-Forb	0	0.0%	B-Forb	0	0.0%	
A-Forb	0	0.0%	A-Forb	0	0.0%	
P-Grass	0	0.0%	P-Grass	0	0.0%	
A-Grass	0	0.0%	A-Grass	0	0.0%	
P-Sedge	0	0.0%	P-Sedge	0	0.0%	
A-Sedge	0	0.0%	A-Sedge	0	0.0%	
Cryptogam	0	0.0%				

	PHYSIOGNOMIC	RELATIVE	IMPORTANCE	VALUES	
PHYSIOGNOM	IY FI	RQ CON	/ RFRQ	RCOV	RIV
Nt Tree		1 1	L 50.0	50.0	50.0
Nt Shrub		1. 1	l 50.0	50.0	50.0

	SPECIES RELATIVE	IMPORTANCE VA	ALUES			
SCIENTIFIC NAME	C WE1	NESS FRQ	cov	RFRO	RCOV	RIV
EMPTY QUADRAT	0	1	100	33.3	98.0	65.7
Acer negundo	0 FAC	W- 1	1	33.3	1.0	17.2
Ribes americanum	7 FAC	W 1	1	33.3	1.0	17.2
		3	102			

ACRONYM	C SCIENTIFIC NAME	W WETNESS	PHYSIOGNOMY	COMMON NAME
ACENEG	0 Acer negundo	-2 FACW-	Nt Tree	BOX ELDER
EMPTY	0 EMPTY QUADRAT	0 nil	nil	EMPTY QUADRAT
RIBAME	7 Ribes americanum	-3 FACW	Nt Shrub	WILD BLACK CURRANT

-

..

Site: Locale: Date:	Goodenow Grove, Will County, Illinois GTAP GA-3 Herbaceous Plot
By: File:	August 31, 2004 Five hours Earth Tech c:\FQA\studies\BaselineReport\CTAP GA-3 Grassland Plot.tra

				TRAI	SECT DA	ATA, QU	ADRAT			
QUAD	MC	W/Ad	FQI	W/Ad	MW	W/Ad	NS	TS	MW SEO	W/Ad
1	3.5	3.5	7.0	7.0	~0.7	-0.7	4	4	-0.2	-0.2
2	3.0	3.0	6.0	6.0	0.3	0.3	4	4	0.6	0.6
3	3.9	3.4	11.0	10.3	2.4	2.2	8	9	1.5	1.5
4	3.5	3.5	8.6	8.6	2.0	2.0	6	6	2.2	2.3
5	4.1	3.6	11.0	10.3	2.3	2.6	7	8	2.3	2.4
6	3.1	3.1	8.3	8.3	2.7	2.7	7	7	2.2	2.3
7	3.8	3.8	9.4	9.4	1.5	1.5	6	6	2.1	2.1
8	4.7	4.7	8.1	8.1	2.0	2.0	3	3	2.3	2.1
9	5.0	3.8	8.7	7.5	3.3	2.8	3	4	3.0	2.4
10	4.0	2.4	6.9	5.4	3.7	2.6	3	5	2.9	2.3
11	5.0	5.0	8.7	8.7	1.7	1.7	3	3	2.4	2.0
12	3.3	3.3	6.5	6.5	1.8	1.8	4	4	2.3	2.1
13	4.0	3.2	8.0	7.2	3.5	3.0	4	5	2.5	2.4
14	3.3	3.3	5.8	5.8	2.3	2.3	3	3	2.6	2.4
15	3.7	3.7	6.4	6.4	2.0	2.0	3	3	2.4	2.4
16	3.8	3.8	8.5	8.5	2.8	2.8	5	5	2.6	2.6
17	5.0	5.0	7.1	7.1	3.0	3.0	2	2	2.6	2.6
18	2.8	2.8	6.3	6.3	2.0	2.0	5	5	2.1	2.1
19	2.8	2.8	6.3	6.3	1.4	1.4	5	5	2.1	2.1
20	4.3	4.3	10.6	10.6	3.0	3.0	6	6	2.2	2.2
AVG	3.8	3.6	7.9	7.7	2.1	2.0	4.6	4.8		
STD	0.7	0.7	1.6	1.6	1.1	0.9	1.7	1.8		

С	NUMBER
0	1
1	4
2	4 0 to 3
3	1 45.5%
4	4
5	6
6	0 4 to 7
7	0 45.5%
8	2
9	0 8 to 10
10	0 9.1%

22 NATIVE SPECIES 25 TOTAL SPECIES 3.5 NATIVE MEAN C 3.1 W/Adventives 16.4 NATIVE PQI 15.4 W/Adventives 1.3 NATIVE MEAN W 1.4 W/Adventives

		-			
Native	22	88.0%	Adventive	3	12.0%
Tree	0	0.0%	Tree	0	0.0%
Shrub	1	4.0%	Shrub	0	0.0%
W-Vine	1	4.0%	W-Vine	0	0.0%
H-Vine	0	0.0%	H-Vine	0	0.0%
P-Forb	14	56.0%	P-Forb	0	0.0%
B-Forb	1	4.0%	B-Forb	1	4.0%
A-Forb	0	0.0%	A-Forb	1	4.0%
P-Grass	3	12.0%	P-Grass	1	4.0%
A-Grass	1	4.0%	A-Grass	0	0.0%
P-Sedge	1	4.0%	P-Sedge	0	0.0%
A-Sedge	0	0.0%	A-Sedge	0	0.0%
Cryptogam	0	0.0%			
	PHYSIOGN	DMIC RE	LATIVE IMPORTANCE	VALUES	
PHYSIOGNOM	Y	FRQ	COV RFRQ	RCOV	RIV
Nt P-Grass		26	1220 26.8	64.0	45.4
Nt P-Forb		46	418 47.4	21.9	34.7

NC	P-GLASS	20	1220	26.8	64.0	45.4
Nt	P-Forb	46	418	47.4	21.9	34.7
Nt	B-Forb	12	104	12.4	5.5	8.9
Ađ	P-Grass	4	100	4.1	5.2	4.7
Nt	W-Vine	3	7	3.1	0.4	1.7
Nt	Shrub	2	6	2.1	0.3	1.2
Nt	P-Sedge	1	25	1.0	1.3	1.2
Nt	A-Grass	1	25	1.0	1.3	1.2
Ađ	A-Forb	1	1	1.0	0.1	0.5

•

. • •

Ad B-Forb	1	1	1.0	0.1	0.5

SPECIES	RELAT	IVE IMPOR	PANCE V	ALUES			
SCIENTIFIC NAME	С	WETNESS	FRQ	COV	RFRO	RCOV	RIV
Andropogon gerardii	5	FAC-	19	1020	$17.\tilde{9}$	42.0	30.0
SOIL	0		9	520	8.5	21.4	15.0
Solidago altissima	1	FACU	10	162	9.4	6.7	8.1
Erigeron strigosus	5	[UPL]	12	104	11.3	4.3	7.8
Silphium integrifolium deamii	5	UPL	9	89	8.5	3.7	6.1
Sorghastrum nutans	5	FACU+	4	125	3.8	5.2	4.5
POA PRATENSIS	0	FAC-	4	100	3.8	4.1	3.9
Helianthus grosseserratus	2	FACW-	4	80	3.8	3.3	3.5
Panicum virgatum	5	FAC+	3	75	2.8	3.1	3.0
Euphorbia corollata	2	UPL	4	12	3.8	0.5	2.1
Fragaria virginiana	1	FAC~	4	8	3.8	0.3	2.1
Juncus dudleyi	4	[FAC]	4	4	3.8	0.2	2.0
Rhus radicans	2	FAC+	3	7	2.8	0.3	1.6
Potentilla simplex	4	FACU-	2	26	1.9	1.1	1.5
Monarda fistulosa	4	FACU	2	6	1.9	0.2	1.1
Rosa carolina	5	FACU-	2	6	1.9	0.2	1.1
Aster azureus	8	UPL	1	25	0.9	1.0	1.0
Convolvulus sepium	1	FAC	2	2	1.9	0.1	1.0
Eleocharis compressa	8	FACW	1	25	0.9	1.0	1.0
Panicum capillare	1	FAC	1	25	0.9	1.0	1.0
Apocynum sibiricum	2	FAC+	1	1	0.9	0.0	0.5
Aster novae-angliae	4	FACW	1	1	0.9	0.0	0.5
Aster pilosus	0	FACU+	1	1	0.9	0.0	0.5
DAUCUS CAROTA	0	UPL	1	1	0.9	0.0	0.5
MEDICAGO LUPULINA	0	FAC-	1	1	0.9	0.0	0.5
Solidago graminifolia nuttallii	3	[FAC]	1	1	0.9	0.0	0.5
			106	2427			

ACRONYM	C SCIENTIFIC NAME	W WETNESS PHYSIO	GNOMY COMMON NAME
ANDGER	5 Andropogon gerardii	1 FAC- Nt P-G	rass BIG BLUESTEM GRASS
APOSIB	2 Apocynum sibirícum	~1 FAC+ Nt P-F	DID PRAIRIE INDIAN HEMP
ASTAZU	8 Aster azureus	5 UPL Nt P-F	
ASTNOV	4 Aster novae-angliae	-3 FACW Nt P-F	Drb NEW ENGLAND ASTER
ASTPIL	0 Aster pilosus	2 FACU+ Nt P-F	orb HAIRY ASTER
CONSEP	1 Convolvulus sepium	0 FAC Nt P-F	YD HEDGE BINDWEED
DAUCAR	0 DAUCUS CAROTA	5 UPL Ad B-F	orb QUEEN ANNE'S LACE
ELECOM RUSH	8 Eleocharis compressa	-3 FACW Nt P-Se	dge FLAT-STEMMED SPIKE
ERISTR	5 Erigeron strigosus	5 (UPL) Nt B-Fo	Drb DAISY FLEABANE
EUPCOR	2 Euphorbia corollata	5 UPL Nt P-Fo	orb FLOWERING SPURGE
FRAVIR	l Fragaria virginiana	1 FAC- Nt P-Fo	orb WILD STRAWBERRY
HELGRO	2 Helianthus grosseserratus	-2 FACW- Nt P-Fo	Drb SAWTOOTH SUNFLOWER
JUNDUD	4 Juncus dudleyi	0 [FAC] Nt P-Fo	DUDLEY'S RUSH
MEDLUP	0 MEDICAGO LUPULINA	1 FAC- Ad A-Fo	rb BLACK MEDICK
MONFIS	4 Monarda fistulosa	3 FACU Nt P-Fo	rb WILD BERGAMOT
PANCAP	1 Panicum capillare	0 FAC NE A-GI	ass OLD WITCH GRASS
PANVIR	5 Panicum virgatum	-1 FAC+ Nt P-Gr	ass SWITCH GRASS
POAPRA	0 POA PRATENSIS	1 FAC- Ad P-Gr	ass KENTUCKY BLUE GRASS
POTSIS	4 Potentilla simplex	4 FACU- Nt P-FC	rb COMMON CINQUEFOIL

RHURAD	2 Rhus radicans	-1 FAC+	Nt W-Vine	POISON IVY
ROSCAR	5 Rosa carolina	4 FACU-	Nt Shrub	PASTURE ROSE
SILIND	5 Silphium integrifolium deamii	5 UPL	Nt P-Forb	DEAM'S ROSIN WEED
SOIL	0 SOIL	0 nil	nil	SOIL
SOLALT	1 Solidago altissima	3 FACU	Nt P-Forb	TALL GOLDENROD
SOLGRN GOLDENROD	3 Solidago graminifolia nuttallii	0 [FAC]	Nt P-Forb	HAIRY GRASS-LEAVED
SORNUT	5 Sorghastrum nutans	2 FACU+	Nt P-Grass	INDIAN GRASS

. . . ••• .

÷.

Goodenow Grove Nature Preserve CTAP Plots

Site: Locale: Date: By:	Goodenow Grove, Will County, Illinois GC-2, All Transects, Herbaceous Plot Sept 7, 2004 Four hours
Бу:	Earth Tech
File:	c:\FQA\studies\BaselineReport\CTAP GC-2 All Transects, Herb Plot.tra

				TRA	NSECT D	ATA, QU	ADRAT			
QUAD	MC	W/Ad	FQI	W/Ad	MW	W/Ad	NS	TS	MW SEQ	W/Ad
1	2.8	2.8	8.9	8.9	0.9	0.9	10	10	1.5	1.5
2	3.3	3.3	10.4	10.4	2.1	2.1	10	10	1.4	1.4
3	3.6	3.6	11.4	11.4	1.3	1.3	10	10	0.8	0.8
4	2.8	2.8	5.5	5.5	-1.0	-1.0	4	4	-0.4	-0.4
5	4.2	4.2	10.2	10.2	-1.5	-1.5	6	6	-0.2	-0.2
6	2.3	2.3	4.5	4.5	1.8	1.8	4	4	-0.0	-0.0
7	3.4	3.4	7.6	7.6	~0.4	-0.4	5	5	-0.2	-0.2
8	2.8	2.8	5.5	5.5	-2.0	-2.0	4	4	-0.8	-0.8
9	4.0	4.0	8.9	8.9	0.0	0.0	5	5	-0.8	-0.8
10	3.2	3.2	7.8	7.8	-0.3	-0.3	6	6	0.1	0.1
11	3.5	3.5	8.6	8.6	0.7	0.7	6	6	1.1	1.1
12	3.8	3.8	8.5	8.5	3.0	3.0	5	5	1.1	1.1
14	2.0	2.0	4.0	4.0	-0.5	-0.5	4	4	0.2	0.2
15	2.7	2.7	6.5	6.5	-2.0	-2.0	6	б	~0.2	-0.2
17	3.3	3.3	5.8	5.8	2.0	2.0	3	3	-0.7	-0.7
18	4.0	4.0	8.9	8.9	-2.0	-2.0	5	5	0.0	0.0
19	0.0	0.0	0.0	0.0	0.0	0.0	0	0	0.3	0.3
20	5.0	5.0	5.0	5.0	3.0	3.0	1	1	0.9	0.9
21	3.2	3.2	7.8	7.8	-0.2	-0.2	6	6	0.8	0.8
22	3.3	3.3	8.2	8.2	-0.3	-0.3	6	6	-0.1	-0.1
23	2.6	2.6	7.7	7.7	0.2	0.2	9	9	0.1	0.1
24	2.6	2.6	6.8	6.8	0.4	0.4	7	7	0.4	0.4
25	3.6	3.6	10.7	10.7	0.4	0.4	9	9	0.1	0.1
26	3.7	3.7	11.0	11.0	-0.4	~0.4	9	9	0.1	0.1
27	2.7	2.7	7.2	7.2	0.4	0.4	7	7	0.1	0.1
28	2.8	2.8	8.3	8.3	0.2	0.2	9	9	0.1	0.1
29	3.7	3.7	9.0	9.0	-0.3	-0.3	6	6	0.1	0.1
30	3.7	3.7	12.4	12.4	0.5	0.5	11	11	0.1	0.1
AVG	3.2	3.2	. 7.7	7.7	0.2	0.2	6.2	6.2		
STD	0.9	0.9	2.6	2.6	1.3	1.3	2.7	2.7		

•	с	NUMBER	. •			43	NATIVE SPECIES
	0	1					
	1	4	•				NATIVE MEAN C
	2	7 0 to	5 3			3.8	W/Adventives
	3	6 41	.98		2		NATIVE FOI
	4	7				4.7	W/Adventives
	5	14					NATIVE MEAN W
	6	1 4 to	o 7			0.6	W/Adventives
	7	2 55	.88				
	8	1					
	9	0 8 to	10				
	10	0 2	.3%				
Native	43	100.0%	Adve	ntive	0	0.0	9
Tree	6	14.0%	Tree		0	0.0	
Shrub	2	4.78	Shru	b	õ	0.0	
W-Vine	2	4.78	W-Vi	ne	0	0.0	
H-Vine	0	0.0%	H-Vi	ne	0	0.0	
P-Forb	23	53.5%	P-Fo	rb	0	0.0	
B-Forb	0	0.0%	B-Fo	rb	0	0.0	
A-Forb	4	9.3%	A-Fo	rb	0	0.0	÷
P-Grass	3	7.0%	P-Gr	ass	0	0.0	8
A-Grass	0	0.0%	A~Gr	ass	0	0.0	£
P-Sedge	2	4.7%	P-Se	dge	0	0.0	8
A-Sedge	0	0.0%	A-Se	dge	0	0.0	8
Cryptogam	1	2.3%					
	PHYSIOG	NOMIC RELA	TTVE IM	PORTANCE	VALUES		
PHYSIOGNOM		FRQ	COV	RFRO	RCOV		RIV
Nt P-Forb		107	1721	61.8	77.8		9.8
		-				0	

SPECIES	RELATIVE IM	PORTANCE V	ALUES			
SCIENTIFIC NAME	C WETNES	SS FRO	COV	RFRO	RCOV	RIV
Sanicula gregaria	2 FAC+	23	596	12.2	21.1	16.7
SOIL	0	14	506	7.4	17.9	12.7
Pilea pumila	5 FACW	16	246	8.5	8.7	8.6
Polygonum virginianum	2 FAC	18	190	9.6	6.7	8.2
Eupatorium rugosum	4 UPL	10	280	5.3	9.9	7.6
Cryptotaenia canadensis	2 FAC	13	225	6.9	8.0	7.4
Actinomeris alternifolia	5 FACW	5	130	2.7	4.6	3.6
Rubus allegheniensis	3 FACU+	4	56	2.1	2.0	2.1
EMPTY QUADRAT	0	1	100	0.5	3.5	2.0
Oxalis europaea	0 FACU	6	18	3.2	0.6	1.9
Carex granularis	4 FACW+	3	55	1.6	2.0	1.8
Rhus radicans	2 FAC+	6	14	3.2	0.5	1.8
Leersia virginica	7 FACW	4	36	2.1	1.3	1.7
Circaea lutetiana canadensis	1 FACU	3	35	1.6	1.2	1.4
Galium concinnum	5 (UPL)	2	50	1.1	1.8	1.4
Cinna arundinacea	5 FACW	4	12	2.1	0.4	1.3
Amphicarpaea bracteata	4 FAC	1	50	0.5	1.8	1.2
Boehmeria cylindrica	2 OBL	1	50	0.5	1.8	1.2
Polygonum hydropiper	2 FACW	4	8	2.1	0.3	1.2
Prunus serotina	1 FACU	4	8	2.1	0.3	1.2
Solidago ulmifolia	S UPL	3	15	1.6	0.5	1.1
Triosteum perfoliatum	5 UPL	2	30	1.1	1.1	1.1
Campanula americana	3 FAC	3	11	1.6	0.4	1.0
Potentilla simplex	4 FACU-	3	11	1.6	0.4	1.0
Carex pensylvanica	5 UPL	3	7	1.6	0.2	0.9
Viburnum prunifolium	5 FACU	3	7	1.6	0.2	0.9
Viola sororia	3 FAC-	3	3	1.6	0.1	0.9
Arisaema triphyllum	4 FACW-	2	2	1.1	0.1	0.6
Fraxinus americana	5 FACU	2	6	1.1	0.2	0.6
Geum canadense	1 FAC	2	6	1.1	0.2	0.6
Glyceria striata	4 [FACW]	-	2	1.1	0.1	0.6
Osmorhiza claytonii	3 FACU-	2	2	1.1	0.1	0.6
Polemonium reptans	5 FAC	2	6	1.1	0.2	0.6
Ulmus rubra	4 FAC	2	6	1.1	0.2	0.6
Viola pubescens	5 FACU-	2	6	1.1	0.2	0.6
Carya ovata	5 FACU	1	5	0.5	0.2	0.4
Parthenocissus quinquefolia	2 FAC-	1	5	0.5	0.2	0.4
Polygonatum canaliculatum Quercus alba	3 FACU	1	5	0.5	0.2	0.4
Ranunculus fascicularis	5 FAC	1	5	0.5	0.2	0.4
Teucrium canadense	6 FACU	1	5	0.5	0.2	0.4
Athyrium filix-femina michauxii	3 FACW	1	5	0.5	0.2	0.4
	8 FAC	1	1	0.5	0.0	0.3
Bidens frondosa Polygonum hydropiperoides	1 FACW	1	1	0.5	0.0	0.3
Tilia americana	7 OBL	1	1	0.5	0.0	0.3
IIIIa americana	5 FACU	1	1	0.5	0.0	0.3
		188	2819			

ACRONYM	C SCIENTIFIC NAME	W WETNESS	PHYSIOGNOMY	COMMON NAME
ACTALT	5 Actinomeris alternifolia	-3 FACW	Nt P-Forb	WINGSTEM
AMPBRB	4 Amphicarpaea bracteata	0 FAC	Nt P-Forb	UPLAND HOG PEANUT
ARITRI	4 Arisaema triphyllum	-2 FACW-	Nt P-Forb	JACK-IN-THE-PULPIT
ATHFIM	8 Athyrium filix-femina michauxii	0 FAC	Cryptogam	LADY FERN
BIDFRO TICKS	l Bidens frondosa	-3 FACW	Nt A-Forb	COMMON BEGGAR'S
BOECYC	2 Boehmeria cylindrica	-5 OBL	Nt P-Forb	FALSE NETTLE

CAMAME	3 Campanula americana	0 FAC	Nt A-Forb	TALL BELLFLOWER
CXGRAN	4 Carex granularis	-4 FACW+	Nt P-Sedge	PALE SEDGE
CXPENS	5 Carex pensylvanica	5 UPL	Nt P-Sedge	COMMON OAK SEDGE
CAROVT	5 Carya ovata	3 FACU	Nt Tree	SHAGBARK HICKORY
CINARU	5 Cinna arundinacea	-3 FACW	Nt P-Grass	COMMON WOOD REED
CIRLUC NIGHTSHADI	l Circaea lutetiana canadensis	3 FACU	Nt P-Forb	ENCHANTER'S
CRYCAN	2 Cryptotaenia canadensis	0 FAC	Nt P-Forb	HONEWORT
EMPTY	0 EMPTY QUADRAT	0 nil	nil	EMPTY QUADRAT
EUPRUG	4 Eupatorium rugosum	5 UPL	Nt P-Forb	WHITE SNAKEROOT
FRAAMA	5 Fraxinus americana	3 FACU	Nt Tree	WHITE ASH
GALCON	5 Galium concinnum	5 [UPL]	Nt P-Forb	SHINING BEDSTRAW
GEUCAN	1 Geum canadense	0 FAC	Nt P-Forb	WOOD AVENS
GLYSTR	4 Glyceria striata	-3 [FACW]	Nt P-Grass	FOWL MANNA GRASS
LEEVIR	7 Leersia virginica	-3 FACW	Nt P-Grass	WHITE GRASS
OSMCLO	3 Osmorhiza claytonii	4 FACU-	Nt P-Forb	HAIRY SWEET CICELY
OXAEUR	0 Oxalis europaea	3 FACU	Nt P-Forb	TALL WOOD SORREL
PARQUI	2 Parthenocissus guinguefolia	l FAC-	Nt W-Vine	VIRGINIA CREEPER
PILPUM	5 Pilea pumila	-3 FACW	Nt A-Forb	CLEARWEED
POLREP	5 Polemonium reptans	0 FAC	Nt P-Forb	JACOB'S LADDER
POLCAL SEAL	3 Polygonatum canaliculatum	3 FACU	Nt P-Forb	SMOOTH SOLOMON'S
POLHYR	2 Polygonum hydropiper	-3 FACW	Nt A-Forb	WATER PEPPER
POLHYS	? Polygonum hydropiperoides	~5 OBL	Nt P-Forb	MILD WATER PEPPER
POLGVI	2 Polygonum virginianum	0 FAC	Nt P-Forb	WOODLAND KNOTWEED
POTSIS	4 Potentilla simplex	4 FACU-	Nt P-Forb	COMMON CINQUEFOIL
PRUSER	l Prunus serotina	3 FACU	Nt Tree	WILD BLACK CHERRY
QUEALB	5 Quercus alba	0 FAC	Nt Tree	WHITE OAK
RANFAS	6 Ranunculus fascicularis	3 FACU	Nt P-Forb	EARLY BUTTERCUP
RHURAD	2 Rhus radicans	-1 FAC+	Nt W-Vine	POISON IVY
RUBALL	3 Rubus allegheniensis .	2 FACU+	Nt Shrub	COMMON BLACKBERRY
SANGRE SNAKEROOT	2 Sanicula gregaria	-1 FAC+	Nt P-Forb	CLUSTERED BLACK
SOIL	0 SOIL	0 nil	nil	SOIL
SOLULM GOLDENROD	5 Solidago ulmifolia	5 UPL	Nt P-Forb	ELM-LEAVED
TEUCAN	3 Teucrium canadense	-3 FACW	Nt P-Forb	GERMANDER
TILAME	5 Tilia americana	3 FACU	Nt Tree	AMERICAN LINDEN
TRIPER	5 Triosteum perfoliatum	5 UPL	Nt P-Forb	LATE HORSE GENTIAN
ULMRUB	4 Ulmus rubra	0 FAC	Nt Tree	SLIPPERY ELM
VIBPRU	5 Viburnum prunifolium	3 FACU	Nt Shrub	BLACK HAW

VIOPUB	5 Viola pubescens	•	4 FACU-	Nt P-Forb	YELLOW VIOLET
VIOSOR	3 Viola sororia		1 FAC-	Nt P-Forb	COMMON BLUE VIOLET

••
• •
•

: -

Site: Locale: Date: By: File:	CTAP G Septem Earth	C-2 Transec ber 7, 2004 Tech	ill County, Il t 1, Shrub Plo Six hours selineReport\C	Ľ	Transed	et 1,	Shrub P]	.ot.tra
QUAD 3 3 4 5	MC 0.0 0.0 0.0 5.0	W/Ad FQ 0.0 0. 0.0 0. 0.0 0. 5.0 5.	0 0.0 0. 0 0.0 0. 0 0.0 0.	W/Ad 0.0 0.0 0.0 0.0	JADRAT NS 0 0 0 1	TS 0 0 1	MW SEQ 0.0 0.0 1.0 1.5	0.0 0.0 1.0
AVG STD	1.3 2.5	$ \begin{array}{cccc} 1.3 & 1. \\ 2.5 & 2. \end{array} $			0.3 0.5	0.3 0.5		
	C 0 1 2 3 4 5 6 7 8 9 10	NUMBER 0 0 0 to 0 0. 0 1 0 4 to 0 100. 0 0 8 to 0 0.	0% 7 0% 10	5 5 5 3	.0 0.1 0 0.1 0.0 0.1 0 0.1	AL SPE IVE ME V/Adve IVE FQ V/Adve IVE ME	CIES AN C ntives I ntives	
Native Tree Shrub W-Vine H-Vine P-Forb B-Forb A-Forb P-Grass A-Grass P-Sedge A-Sedge Cryptogam		100.0% 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0	Adventive Tree Shrub W-Vine H-Vine P-Forb B-Forb A-Forb P-Grass A-Grass P-Sedge A-Sedge	0 0 0 0 0 0 0	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	·. •	- -	
PHYSIOGNO Nt Tree		GNOMIC RELA FRQ 1	COV RFRQ 1 100.0	RCOV	RIV 100.0			
SCIENTIFI EMPTY QUA Carya ova	DRAT	SPE	CIES RELATIVE D C WETY 0 5 FACU	iess f		29		COV RIV 6.7 85.8 3.3 14.2

ACRONYM	C SCIENTIFIC NAME	W WETNESS	PHYSIOGNOMY	COMMON NAME
CAROVT	5 Carya ovata	3 FACU	Nt Tree	SHAGBARK HICKORY
EMPTY	0 EMPTY QUADRAT	0 nil	nil	EMPTY QUADRAT

Locale: Date: By:		GC-2 Tra mber 7,	nsect		b Plot							
File:		A\studie:	s∖Base	lineRep	ort\CT	AP GC-2	Transe	ct 2	. Shrub	Plot	.tra	
				TRA	NSECT I	DATA, QI	UADRAT					
QUAD	MC	W/Ad	FQI	W/Ad	MW	W/Ad		Т	S MW	SEQ	W/Ad	
1	4.5	4.5	6.4	6.4	1.0	1.0	2		2	0.5	0.5	
2	0.0	0.0	0.0	0.0	0.0	0.0			0	0.3	0.3	
3	0.0	0.0	0.0	0.0	0.0	0.0				0.0	0.0	
4 5	0.0 0.0	0.0	0.0	0.0	0.0	0.0				0.0	0.0	
J	0.0	0.0	0.0	0.0	0.0	0.0	0		0 0	0.0	0.0	
AVG STD	0.9 2.0	0.9 2.0	1.3 2.8	1.3 2.8	0.2 0.4	0.2		0.				
010	2.0	2.0	2.0	2.0	0.4	0.4	0.9	0.	9			
	с	NUMBEI	ર				2 NAT	TVE	SPECIES			
	0	0							PECIES			
	1	0				4	1.5 NAT					
	2) to 3			4	1.5 1	N/Ađ	ventives	3		
	3	0	50.0%				5.4 NAT					
	4 5	0							ventives	5		
	6	0	l to 7				L.O NAT					
	7	1	50.0%			Ļ	L.O 1	N/Ad	ventives	3		
	8	õ	20.00									
	9	8 0	to 10									
	10	0	0.0%									
Native	2	100.08	5	Advent	ive	0	0.0%					
Tree	1	50.0%		Tree		õ	0.0%					
Shrub	0	0.0%	5	Shrub		0	0.0%					
W-Vine	1	50.0%		W-Vine		0	0.0%					
H-Vine	0	0.08		H-Vine		0	0.0%					
P-Forb B-Forb	0 0	0.08		P-Forb		0	0.0%					
A-Forb	0	0.0% 0.0%		B-Forb A-Forb		.0 0	0:0% 0.0%					
P-Grass	0 0	0.0%		P-Grass	3	0	0.0%					
A-Grass	0	0.0%		A-Grass		Õ	0.0%					
P-Sedge	0	0.0%		P-Sedge		0	0.0%	•				
A-Sedge	0	0.0%		A-Sedge	2	0	0.0%					
Cryptogam	0	0.0%										
DUVOTOONO		GNOMIC R										
PHYSIOGNON Nt W-Vine	1 Y	FRQ			RFRQ	RCOV	RIV					
Nt Tree		1			50.0 50.0	50.0 50.0	50.0 50.0					
		-		1 .	,0.0	50.0	50.0					
			CDPCT			00002320						
SCIENTIFIC	NAME		JFBCIE	S RELAT	CIVE IM WETNE			es cov	RFRQ	RCOV	יייניד	r
EMPTY QUAL				(4					
Quercus ru					FACU		1	1	16.7	2.5		
Rhus radio	cans				FAC+		1	1	16.7	2.5		
							6	40				
10000000												
ACRONYM		ENTIFIC						WI	WETNESS	PHYS	IOGNOMY	COMMON NAME
EMPTY	0 EMP	TY QUADR	АT					0 1	nil	nil		EMPTY QUADRAT
QUERUB	7 Que:	rcus rub	ra					3 I	FACU	Nt T	ree	RED OAK

-1 FAC+

Nt W-Vine POISON IVY

Site: Goodenow Grove, Will County, Illinois Locale: CTAP GC-2 Transect 2. Shrub Plot

RHURAD

2 Rhus radicans

	Site: Locale: Date: By: File:	CTAP (Septen Earth	GC-2 Tra nber 7, Tech	ansect 2004	l County 3, Shrub Six ho lineRepo) Plot ours		Tran	sect	3, Sh	rub P	lot.tr	ca	
					TRAN	ISECT D	ATA, Ç	UADRA	r					
	QUAD 1	MC 0.0	W/Ad	FQI	W/Ad	MW	W/Ađ				MW SE		Ad	
	2	7.0	0.0 7.0	0.0 7.0	0.0 7.0	0.0 3.0	0.0 3.0		D 1.	0 1	1. 1.		L.S L.O	
	3	0.0	0.0	0.0	0.0	0.0	0.0		0	0	2.		2.0	
	4	7.0	7.0	7.0	7.0	3.0	3.0		1	1	1.		.7	
	5	3.0	3.0	3.0	3.0	2.0	2.0	-	1	1	2.	5 2	2.5	
	AVG	3.4	3.4	3.4	3.4	1.6	1.6	0.6	5 0	.6				
	STD	3.5	3.5	3.5	3.5	1.5	1.5	0.5	5 0	.5				
		с	NUMBI	95				נוא כ	N 47 T 1 7 C	SPEC:	TRO			
		0	0							SPECI				
		1	0					5.0 NZ	ATIVE	MEAN	С			
		2 3	0 1	0 to 3 50.0%				5.0 7.1 NA		dvent:	ives			
		4	0	50.08				7.1 NA 7.1		dvent:	ives			
		5	0					2.5 N#						
		6 7		4 to 7 50.0%				2.5	W/A	dvent	ives			
		8	1 0	50.08										
		9		3 to 10										
		10	0	0.0%										
	Native	2	100.0)%	Adventi	ve	0	0.0%						
	Tree	1	50.0		Tree		0	0.0%						
	Shrub	1	50.0		Shrub		0	0.0%						
	W-Vine H-Vine	0	0.0 0.0		W-Vine H-Vine		0 0	0.0% 0.0%						
	P-Forb	Ő	0.0		P-Forb		0	0.0%						
	B-Forb	0	0.0		B-Forb		0	0.0%						
;	A-Forb	0	0.0		A-Forb		0	0.0%						
	P-Grass A-Grass	0	0.0 0.0		P-Grass A-Grass		0 0	0.0% 0.0%						
	P-Sedge	õ	0.0		P-Sedge		0	0.0%						
	A-Sedge	0	0.0		A-Sedge		0	0.0%						
	Cryptogam	0	0.0) ዓ										
			GNOMIC	RELATIV	/E IMPOR	TANCE	VALUES							
	PHYSIOGNOM	ίΥ	FF			FRQ	RCOV							
	Nt Tree Nt Shrub			2 1		6.7 3.3	66.7 33.3							
	•• .			-			55.5	55.	9					
	•			SPECI	ES RELAT	IVE IM	PORTAN	CE VAT	JUES					
	SCIENTIFIC					WETNES		FRQ	COV	RFF	RQ I	RCOV	RIV	
	EMPTY QUAL				0			2	20			87.0	63.5	
	Quercus ru Rubus alle		nsis			FACU FACU+		2 1	2 1			8.7 4.3	24.3 12.2	
					J	11001		5	23			4.0	16.2	
	ACRONYM	0.007		NAME										
	ACRONYM		ENTIFIC						W	WETNE	SS 1	PHYSIO	GNOMY	COMMON N
	EMPTY	0 EMP	TY QUAD	RAT					0	nil	1	nil		EMPTY QU
	QUERUB	7 Que:	rcus ru	bra					3	FACU	1	Nt Tre	e	RED OAK
	DUCAT								_					

RUBALL

3 Rubus allegheniensis

ion name Ty quadrat

COMMON BLACKBERRY

2 FACU+ Nt Shrub

Site: Locale: Date: By: File:	CTAP (Septen Earth	GC-2 Tra ber 7, Tech	ansect 2004	l Count 1, Tree Four h	Plot ours		Trans	sect 1	, Tree	Plot.t	ra		
01117						DATA, Q		?					
QUAD	MC	W/Ad	FQI	W/Ad	MW	W/Ad					W/Ad		
1 2	4.5 4.0	4.5 4.0	9.0	9.0	2.3	2.3			4	2.6	2.6		
3	4.7	4.0	5.7 11.4	5.7 11.4	3.0 2.2	3.0				2.5	2.5		
4	4.0	4.0	8.0	8.0	2.2	2.2 3.3				2.8	2.8		
5	4.7	4.7	8.1	8.1	2.3	2.3				2.6 2.8	2.6 2.8		
						2.5			5	2.0	2.0		
AVG	4.4	4.4	8.4	8.4	2.6	2.6	3.8	3.	8				
STD	0.3	0.3	2.1	2.1	0.5	0.5	1.5	1.	5				
	С	NUMBE	2B				10 10	MTVP	SPECIES				
	õ	0							PECIES)			
	1	1							MEAN C				
	2	1	0 to 3				4.6		ventive	5			
	3	0	20.0%				4.5 NA						
	4	1				1	4.5	W/Ad	ventive	s			
	5	5							MEAN W				
	6 7	0 2	4 to 7				2.2	W/Ad	ventive	s			
	8	2 0	80.0%										
	9		8 to 10										
	10	0 0	0.0%										
Native	10	100.0) 8	Advent	ive	0	0.0%						
Tree	10	100.0		Tree		0	0.0%						
Shrub	0	0.0		Shrub		0	0.0%						
W-Vine H-Vine	0 0	0.0		W-Vine		0	0.0%						
P-Forb	0	0.0 0.0		H-Vine P-Forb		0 0	0.0%						
B-Forb	Ő	0.0		B~Forb		0	0.0% 0.0%						
A-Forb	ō	0.0		A-Forb		0	0.08						
P-Grass	0	0.0	8	P-Grass	5	0	0.0%						
A-Grass	0	0.0	8	A-Grass	5	0	0.0%						
P-Sedge	0	0.0		P-Sedge		0	0.0%						
A-Sedge	0	0.0		A-Sedge	5	0	0.0%						
Cryptogam	0	0.0	8										
	PHYSIO	GNOMIC	RELATIN	JE IMPOR	TANCE	VALUES							
PHYSIOGNOM		FR			FRQ	RCOV	RI	v					
Nt Tree			9)0.õ	100.0	100.						
			0000										
SCIENTIFIC	NAME		SPECIE	ES RELAT						n c =-			
Prunus ser					WETNE	55 F	rRQ	COV	RFRQ	RCOV	RIV		
Ostrya vir		à			FACU FACU-		3 3	21 15	15.8 15.8	22.8 16.3	19.3		
Quercus ru		•			FACU		2	15	10.5	16.3	16.0		
Fraxinus a		na			FACU		3	9	15.8	9.8	$13.4 \\ 12.8$		
Tilia amer					FACU		2	7	10.5	7.6	9.1		
Ulmus rubr				4	FAC		2	5	10.5	5.4	8.0		
Quercus al					FAC		1	9	5.3	9.8	7.5		
Carya cord					[FACU]	1	5	5.3	5.4	5.3		
Crataegus Juglans ni		1113			FAC		1	5	5.3	5.4	5.3		
ougrans hi	уга			5	FACU		1	1	5.3	1.1	3.2		
							19	92					
ACRONYM	C SCIE	ENTIFIC	NAME					W W	ETNESS	PHYSI	OGNOMY	COMMON	NAME
	_												

· · · · ·

•

 CARCOR
 7 Carya cordiformis
 3 [FACU]
 Nt Tree
 BITTERNUT HICKORY

 CRACRU
 2 Crataegus crus-galli
 0 FAC
 Nt Tree
 COCKSPUR HAWTHORN

FRAAMA	5 Fraxinus americana	3 FACU	Nt Tree	WHITE ASH
JUGNIG	5 Juglans nigra	3 FACU	Nt Tree	BLACK WALNUT
OSTVIR	5 Ostrya virginiana	4 FACU-	Nt Tree	HOP HORNBEAM
PRUSER	1 Prunus serotina	3 FACU	Nt Tree	WILD BLACK CHERRY
QUEALB	5 Quercus alba	0 FAC	Nt Tree	WHITE OAK
QUERUB	7 Quercus rubra	3 FACU	Nt Tree	RED OAK
TILAME	5 Tilia americana	3 FACU	Nt Tree	AMERICAN LINDEN
ULMRUB	4 Ulmus rubra	0 FAC	Nt Tree	SLIPPERY ELM

. .

Site: Locale: Date: By: File:	CTAP G Septen Earth	now Grove, GC-2 Trans Nber 7, 20 Tech A\studies\	sect 2, 004 [Tree Four ho	Plot urs	-	Transe	ect 2,	Tree F	Plot.tr	a
				(DD 2)	0000 0	3002 01					
QUAD	MC	W/Ad	FQI	'I'RAN W/Ad	SECT D MW	ATA, QU W/Ad	JADRA'I' NS	TS	MW S	SEO M	/Ad
20115	3.2	3.2	7.2	7.2	1.6	1.6	5	5).5	0.5
2	1.4	1.4	3.1	3.1	-0.6	-0.6	5	5	. ().6	0.6
3	3.3	3.3	6.5	6.5	0.8	0.8	4	4			0.1
4 5	3.5 4.0	3.5 4.0	4.9 6.9	4.9 6.9	-0.5 -0.3	~0.5 -0.3	2 3	2			0.0
J	4.0	4.0	0.9	0.9	-0.5	-0.5	5	-	- (0.4
AVG	3.1	3.1	5.7	5.7	0.2	0.2	3.8	3.8			
STD	1.0	1.0	1.7	1.7	1.0	1.0	1.3	1.3			
	С	NUMBER					11 NA)	NIVE S	PECIES		
	0	1					11 TO7				
	1 2	2 2 0	to 3				3.4 NAT 3.4		entive	3	
	3		54.5%				1.2 NAT			-	
	4	0					1.2		rentive	5	
	5 6	3 14	to 7				0.5 NA1 0.5		EAN W entives	_	
	7		45.5%			```		W/Auv	encrver	>	
	8	0									
	9 10	08t 0	:o 10 0.0%								
	10	U	0.06								
Native	11	100.0%		Adventi	ve	0	0.0%				
Tree	11 0	100.0% 0.0%		Pree		0 0	0.0% 0.0%				
Shrub W-Vine	0	0.0% 0.0%		Shrub V-Vine		0	0.0%				
H-Vine	0	0.0%		I-Vine		0	0.0%				
P-Forb	0	0.0%		P-Forb		0	0.0%				
B-Forb A-Forb	0 0	0.0% 0.0%		3-Forb A-Forb		0	0.0% 0.0%				
P-Grass	õ	0.0%		P-Grass		õ	0.0%				
A-Grass	0	0.0%		A-Grass		0	0.0%				
P-Sedge	0 0	0.0%		?-Sedge \-Sedge		0 0	0.0% 0.0%				
A-Sedge Cryptogam		0.0% 0.0%	-			0	0.08				
PHYSIOGNO		GNOMIC RE FRQ			TANCE FRO	VALUES RCOV	RIV	,			
Nt Tree		19			0.0	100.0	100.0				
		ç	SPECIES	 5 RELAT	τνε τΜ	PORTAN	TE VAL	IES			
SCIENTIFI	C NAME				WETNE		FRQ	COV	RFRQ	RCOV	RIV
Prunus se					FACU		4	15	21.1	15.8	18.4
Quercus a					FAC		2	18	10.5	18.9	14.7
Quercus b Acer sacc		1			FACW+ FACW		2 2	18 10	10.5 10.5	18.9 10.5	14.7 10.5
Fraxinus			egerrin		FAC		2	6	10.5	6.3	8.4
Populus d	eltoide		-	2	FAC+		1	9	5.3	9.5	7.4
Quercus r					FACU		1	9	5.3	9.5	7.4
Ulmus ame					FACW-		2	2	10.5	2.1	6.3
Carya ova Crataegus					FACU FACU-		1 1	6 1	5.3 5.3	6.3 1.1	5.8 3.2
Tilia ame					FACU-		1	1	5.3	1.1	3.2
							19	95			

•

ACRONYM	C SCIENTIFIC NAME	W WETNESS	PHYSIOGNOMY	COMMON NAME
ACESAI	0 Acer saccharinum	-3 FACW	Nt Tree	SILVER MAPLE
CAROVT	5 Carya ovata	3 FACU	Nt Tree	SHAGBARK HICKORY

-

CRAMOL	2 Crataegus mollis	4 FACU	Nt Tree	DOWNY HAWTHORN
FRAPES	l Fraxinus pennsylvanica subintegerrima	0 FAC	Nt Tree	GREEN ASH
POPDEL	2 Populus deltoides	-1 FAC+	Nt Tree	EASTERN COTTONWOOD
PRUSER	l Prunus serotina	3 FACU	Nt Tree	WILD BLACK CHERRY
QUEALB	5 Quercus alba	0 FAC	Nt Tree	WHITE OAK
QUEBIC	6 Quercus bicolor	-4 FACW+	Nt Tree	SWAMP WHITE OAK
QUERUB	7 Quercus rubra	3 FACU	Nt Tree	RED OAK
TILAME	5 Tilia americana	3 FACU	Nt Tree	AMERICAN LINDEN
ULMAME	3 Ulmus americana	-2 FACW-	Nt Tree	AMERICAN ELM

• •• • -

Site: Locale: Date: By: File:	CTAP G Septem Earth	ow Grove, 1 C-2 Transe ber 7, 200 Tech \studies\Ba	ct 3, Tree 1 Four P	e Plot Nours	-	Transe	ct 3,	Tree	Plot.t	ra
QUAD 1 2 3 4 5	MC 4.3 4.0 4.5 6.0 4.0	W/Ad F(4.3 7 4.0 5 4.5 9 6.0 8 3.2 8	QI W/Ad .5 7.5 .7 5.7 .0 9.0 .5 8.5	NSECT E MW 2.0 3.0 2.3 1.5 1.5	DATA, QU W/Ad 2.0 3.0 2.3 1.5 1.8	JADRAT NS 3 2 4 2 4 2 4	TS 3 2 4 2 5		SEQ 2.5 2.4 2.2 1.7 1.5	W/Ad 2.5 2.4 2.2 1.8 1.6
AVG STD	4.6 0.8	4.4 7 1.0 1		2.1 0.6	2.1 0.6	3.0 1.0	3.2 1.3			
	C 0 1 2 3 4 5 6 7 8 9 10	NUMBER 0 2 0 0 tc 0 28. 0 4 0 4 tc 1. 7 1 0 0 8 tc 0 0.	68 7 48		3 11 10 2	8 TOT. .1 NAT. .6 NAT. .3 NAT.	W/Adve IVE FQ W/Adve	CIES AN C ntive I ntive	S	
Native Tree Shrub W-Vine H-Vine P-Forb B-Forb A-Forb P-Grass A-Grass P-Sedge A-Sedge Cryptogam	7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0	87.5% 87.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0	Advent Tree Shrub W-Vine H-Vine P-Forb B-Forb A-Forb P-Gras P-Gras P-Sedg A-Sedg	5 5 2	0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	2.5% 0.0% 2.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0				
PHYSIOGNOM Nt Tree Ad Shrub		ENOMIC RELA FRQ 15 1	COV	RTANCE RFRQ 93.8 6.3	RCOV 90.8 9.2	RIV 92.3 7.7				
SPECIES RELATIVE IMPORTANCE VALUES SCIENTIFIC NAME C WETNESS FRQ COV RFRQ RCOV RIV Quercus alba 5 FAC 4 23 25.0 30.3 27.6 Quercus rubra 7 FACU 4 21 25.0 27.6 26.3 Prunus serotina 1 FACU 3 15 18.8 19.7 19.2 RHAMNUS CATHARTICA 0 FACU 1 3 6.3 3.9 5.1 Fraxinus americana 5 FACU 1 3 6.3 3.9 5.1 Fraxinus pennsysubintegerrima 1 FACU 1 3 6.3 3.9 5.1 Tilia americana 5 FACU 1 3 6.3 3.9 5.1 Tilia americana 5 FACU 1 3 6.3 3.9 5.1										

ACRONYM	C SCIENTIFIC NAME	W WETNESS	PHYSIOGNOMY	COMMON NAME
CAROVT	5 Carya ovata	3 FACU	Nt Tree	SHAGBARK HICKORY
FRAAMA	5 Fraxinus americana	3 FACU	Nt Tree	WHITE ASH
FRAPES	1 Fraxinus pennsylvanica subintegerrima	0 FAC	Nt Tree	GREEN ASH

.

: •

PRUSER	l Prunus serotina	3 FACU	Nt Tree	WILD BLACK CHERRY
QUEALB	5 Quercus alba	0 FAC	Nt Tree	WHITE OAK
QUERUB	7 Quercus rubra	3 FACU	Nt Tree	RED OAK
RHACAT	0 RHAMNUS CATHARTICA	3 FACU	Ad Shrub	COMMON BUCKTHORN
TILAME	5 Tilia americana	3 FACU	Nt Tree	AMERICAN LINDEN

. .

.

. .

•

·

Site: Locale:	Goodenow Grove, Will County, Illinois GTAP GA-3 Herbaceous Plot
Date:	August 31, 2004 Five hours
By:	Earth Tech
File:	c:\FQA\studies\BaselineReport\CTAP GA-3 Grassland Plot.tra

				TRAI	NSECT DA	ATA, QU	ADRAT			
QUAD	MC	W/Ad	FQI	W/Ad	MW	W/Ad	NS	TS	MW SEQ	W/Ad
1	3.5	3.5	7.0	7.0	-0.7	-0.7	4	4	-0.2	-0.2
2	3.0	3.0	6.0	6.0	0.3	0.3	4	4	0.6	0.6
3	3.9	3.4	11.0	10.3	2.4	2.2	8	9	1.5	1.5
4	3.5	3.5	8.6	8.6	2.0	2.0	6	6	2.2	2.3
5	4.1	3.6	11.0	10.3	2.3	2.6	7	8	2.3	2.4
6	3.1	3.1	8.3	8.3	2.7	2.7	7	7	2.2	2.3
7	3.8	3.8	9.4	9.4	1.5	1.5	6	6	2.1	2.1
8	4.7	4.7	8.1	8.1	2.0	2.0	3	3	2.3	2.1
9	5.0	3.8	8.7	7.5	3.3	2.8	3	4	3.0	2.4
10	4.0	2.4	6.9	5.4	3.7	2.6	3	5	2.9	2.3
11	5.0	5.0	8.7	8.7	1.7	1.7	3	3	2.4	2.0
12	3.3	3.3	6.5	б.5	1.8	1.8	4	4	2.3	2.1
13	4.0	3.2	8.0	7.2	3.5	3.0	4	5	2.5	2.4
14	3.3	3.3	5.8	5.8	2.3	2.3	3	3	2.6	2.4
15	3.7	3.7	6.4	6.4	2.0	2.0	3	3	2.4	2.4
16	3.8	3.8	8.5	8.5	2.8	2.8	5	5	2.6	2.6
17	5.0	5.0	7.1	7.1	3.0	3.0	2	2	2.6	2.6
18	2.8	2.8	6.3	6.3	2.0	2.0	5	5	2.1	2.1
19	2.8	2.8	6.3	6.3	1.4	1.4	5	5	2.1	2.1
20	4.3	4.3	10.6	10.6	3.0	3.0	6	6	2.2	2.2
AVG	3.8	3.6	7.9	7.7	2.1	2.0	4.6	4.8		
STD	0.7	0.7	1.6	1.6	1.1	0.9	1.7	1.8		

С	NUMBER							
0	1							
1	4							
2	4 0 to 3							
3	1 45.5%							
4	4							
5	6							
б	0 4 to 7							
7	0 45.5%							
8	2							
9	0 8 to 10							
10	0 9.1%							

NATIVE SPECIES TOTAL SPECIES
NATIVE MEAN C
W/Adventives
NATIVE FQI
W/Adventives
NATIVE MEAN W
W/Adventives

.

Native	22	88.0%	Adventive	3	12.0%
Tree	0	0.0%	Tree	0	0.0%
Shrub	1	4.0%	Shrub	0	0.0%
W-Vine	1	4.0%	W-Vine	0	0.0%
H-Vine	0	0.0%	H-Vine	0	0.0%
P-Forb	14	56.0%	P-Forb	0	0.0%
B-Forb	1	4.0%	B-Forb	1	4.0%
A-Forb	0	0.0%	A-Forb	1	4.0%
P-Grass	3	12.0%	P-Grass	1	4.0%
A-Grass	1	4.0%	A-Grass	0	0.0%
P-Sedge	1	4.0%	P-Sedge	0	0.0%
A-Sedge	0	0.0%	A-Sedge	0	0.0%
Cryptogam	0	0.0%			

1	PHYSIOGNOMIC R	ELATIVE	IMPORTANC	E VALUES	
PHYSIOGNOMY	ľ FRQ	COV	RFRQ	RCOV	RIV
Nt P-Grass	26	1220	26.8	64.0	45.4
Nt P-Forb	46	418	47.4	21.9	34.7
Nt B-Forb	12	104	12.4	5.5	8.9
Ad P-Grass	4	100	4.1	5.2	4.7
Nt W-Vine	3	7	3.1	0.4	1.7
Nt Shrub	2	6	2.1	0.3	1.2
Nt P-Sedge	1	25	1.0	1.3	1.2
Nt A-Grass	1	25	1.0	1.3	1.2
Ad A-Forb	1	1	1.0	0.1	0.5

; ·

. • • • •

Ad B-Forb	1	1	1.0	0.1	0.5
-----------	---	---	-----	-----	-----

Ad B-Forb	1	1	1.0	0.1	0.5		-	
	SPECIE	S RELAT	TIVE IMPO	RTANCE V	VALUES			
SCIENTIFIC NAME		0	WETNESS	FRQ	COV	RFRQ	RCOV	RIV
Andropogon gerardii		5	5 FAC-	19	1020	17.9	42.0	30.0
SOIL		()	9	520	8.5	21.4	15.0
Solidago altissima		1	FACU	10	162	9.4	6.7	8.1
Erigeron strigosus		5	[UPL]	12	104	11.3	4.3	7.8
Silphium integrifoli	um deamii	5	UPL	9	89	8.5	3.7	6.1
Sorghastrum nutans		5	FACU+	4	125	3.8	5.2	4.5
POA PRATENSIS		(FAC-	4	100	3.8	4.1	3.9
Helianthus grosseser:	ratus	2	FACW-	4	80	3.8	3.3	3.5
Panicum virgatum		9	FAC+	3	75	2.8	3.1	3.0
Euphorbia corollata		2	UPL	4	12	3.8	0.5	2.1
Fragaria virginiana		1	FAC-	4	8	З.8	0.3	2.1
Juncus dudleyi		4	[FAC]	4	4	3.8	0.2	2.0
Rhus radicans		2	FAC+	3	7	2.8	0.3	1.6
Potentilla simplex		4	FACU-	2	26	1.9	1.1	1.5
Monarda fistulosa		4	FACU	2	6	1.9	0.2	1.1
Rosa carolina		5	FACU~	2	6	1.9	0.2	1.1
Aster azureus		8	UPL	1	25	0.9	1.0	1.0
Convolvulus sepium		1	FAC	2	2	1.9	0.1	1.0
Eleocharis compressa		8	FACW	1	25	0.9	1.0	1.0
Panicum capillare		1	FAC	1	25	0.9	1.0	1.0
Apocynum sibiricum		2	FAC+	1	1	0.9	0.0	0.5
Aster novae-angliae		4	FACW	1	1	0.9	0.0	0.5
Aster pilosus		0	FACU+	1	1	0.9	0.0	0.5
DAUCUS CAROTA		0	UPL	1	1	0.9	0.0	0.5
MEDICAGO LUPULINA			FAC-	1	1	0.9	0.0	0.5
Solidago graminifolia	a nuttalli:	i 3	[FAC]	1	1	0.9	0.0	0.5
				106	2427			

ACRONYM	C SCIENTIFIC NAME	W WETNESS PHYSIOGNOMY COMMON NAME
ANDGER	5 Andropogon gerardii	1 FAC- Nt P-Grass BIG BLUESTEM GRASS
APOSIB	2 Apocynum sibiricum	-1 FAC+ Nt P-Porb PRAIRIE INDIAN HEMP
ASTAZU	8 Aster azureus	5 UPL Nt P-Forb SKY-BLUE ASTER
ASTNOV	4 Aster novae-angliae	-3 FACW Nt P-Forb NEW ENGLAND ASTER
ASTPIL	0 Aster pilosus	2 FACU+ Nt P-Forb HAIRY ASTER
CONSEP	1 Convolvulus sepium	0 FAC Nt P-Forb HEDGE BINDWEED
DAUCAR	0 DAUCUS CAROTA	5 UPL Ad B-Forb QUEEN ANNE'S LACE
ELECOM RUSH	8 Eleocharis compressa	-3 FACW Nt P-Sedge FLAT-STEMMED SPIKE
ERISTR	5 Erigeron strigosus	S [UPL] Nt B-Forb DAISY FLEABANE
EUPCOR	2 Euphorbia corollata	5 UPL Nt P-Forb FLOWERING SPURGE
FRAVIR	l Fragaria virginiana	1 FAC- Nt P-Forb WILD STRAWBERRY
HELGRO	2 Helianthus grosseserratus	-2 FACW- Nt P-Forb SAWTOOTH SUNFLOWER
JUNDUD	4 Juncus dudleyi	0 [FAC] Nt P-Forb DUDLEY'S RUSH
MEDLUP	0 MEDICAGO LUPULINA	1 FAC- Ad A-Forb BLACK MEDICK
MONFIS	4 Monarda fistulosa	3 FACU Nt P-Forb WILD BERGAMOT
PANCAP	1 Panicum capillare	0 FAC Nt A-Grass OLD WITCH GRASS
PANVIR	5 Panicum virgatum	-1 FAC+ Nt P-Grass SWITCH GRASS
POAPRA	0 POA PRATENSIS	1 FAC- Ad P-Grass KENTUCKY BLUE GRASS
POTSIS	4 Potentilla simplex	4 FACU- NL P-Forb COMMON CINQUEFOIL

•

RHURAD	2 Rhus radicans	-1 FAC+	Nt W~Vine	POISON IVY
ROSCAR	5 Rosa carolina	4 FACU-	Nt Shrub	PASTURE ROSE
SILIND	5 Silphium integrifolium deamii	5 UPL	Nt P-Forb	DEAM'S ROSIN WEED
SOIL	0 SOIL	0 nil	nil	SOIL
SOLALT	1 Solidago altissima	3 FACU	Nt P-Forb	TALL GOLDENROD
SOLGRN GOLDENROD	3 Solidago graminifolia nuttallii	0 [FAC]	Nt P-Forb	HAIRY GRASS-LEAVED
SORNUT	5 Sorghastrum nutans	2 FACU+	Nt P-Grass	INDIAN GRASS

Site:	Goodenow Grove, Will County, Illinois
Locale:	CTAP GW-1 Herbaceous Plot
Date:	September 1, 2004 Six hours
Bv:	Earth Tech
File:	c:\FQA\studies\BaselineReport\CTAP GoodenowWetland.tra

				TRA	NSECT D.	ATA, QU	ADRAT			
QUAD	MC	W/Ad	FQI	W/Ad	MW	W/Ad	NS	TS	MW SEQ	W/Ad
1	2.3	1.8	7.0	6.1	-0.6	-0.2	9	12	-0.7	-0.6
2	2.1	1.9	5.7	5.3	-0.9	-1.1	7	8	-0.9	-0.9
3	2.1	1.9	5.7	5.3	-1.3	-1.5	7	8	-1.1	-1.3
4	2.3	2.2	8.1	7.8	-1.2	-1.3	12	13	-1.2	-1.4
5	2.5	2.1	6.1	5.7	-1.0	-1.3	6	7	~1.4	-1.6
6	2.3	1.8	4.0	3.5	-2.0	-2.2	3	4	-1.4	-1.5
7	2.4	1.9	6.7	6.0	-1.1	-1.1	8	10	-1.6	1.7
8	3.0	2.7	9.0	8.5	-1.8	-1.9	9	10	-2.2	-2.2
9	3.8	3.3	10.6	10.0	-3.7	-3.7	8	9	-2.1	~2.2
10	3.3	2.9	8.7	8.1	-0.9	-1.1	7	8	-2.5	-2.6
11	4.2	3.8	12.7	12.0	-2.9	-2.9	9	10	-2.0	-2.2
12	3.6	3.3	11.4	10.9	-2.4	-2.5	10	11	-2.7	-2.7
13	3.7	3.7	11.0	11.0	-2.9	-2.9	9	9	-2.8	-2.8
14	3.9	3.4	10.2	9.5	-3.1	-3.1	7	8	-3.0	-3.0
15	3.9	3.9	12.3	12.3	-2.9	-2.9	10	10	-3.4	-3.4
16	4.6	4.2	14.5	13.9	-4.3	-4.2	10	11	-4.1	-3.9
17	3.0	2.4	6.0	5.4	-5.0	-4.6	4	5	-3.8	-3.7
18	2.8	2.8	5.5	5.5	-2.2	-2.2	4	4	-3.2	-3.1
19	3.4	3.4	11.2	11.2	-2.5	-2.5	11	11	-2.9	-2.9
20	4.0	4.0	10.6	10.6	-4.1	-4.1	7	7	-3.3	-3.3
AVG	3.2	2.9	0 0	0 4	2 2	~ 4				
STD	0.8	2.9	8.8	8.4	-2.3	-2.4	7.8	8.8		
310	0.0	0.0	2.9	3.0	1.3	1.2	2.4	2.5		

	C 0 1 2 3 4 5 6 7 8 9 10	NUMBER 2 5 0 tc 4 44. 8 9 1 4 to 1 52. 0 0 8 to 1 2.	48 7 88 10	.	-	40 TOT 3.5 NAT 3.2 1 21.2 NAT 20.1 1 -2.6 NAT	IVE SPECIES AL SPECIES IVE MEAN C W/Adventives IVE FQI W/Adventives IVE MEAN W W/Adventives
Native	36	90.0%	Adve	entive	4	10.0%	
Tree	1	2.5%	Tree		0	0.0%	
Shrub	1	2.5%	Shru		õ	0.0%	
W-Vine	1	2.5%	W-Vi	•	0	0.0%	
H-Vine	0	0.0%	H-Vi	ine	0	0.0%	
P-Forb	21	52.5%	P-Fc	orb	1	2.5%	
B-Forb	1	2.5%	B-Fc	orb	1	2.5%	
A-Forb	2	5.0%	A-Fo	orb	0	0.0%	
P-Grass	4	10.0%	P-Gr	ass	2	5.0%	
A-Grass	0	0.0%	A-Gr	ass	0	0.0%	
P-Sedge	5	12.5%	P-S€	edge	0	0.0%	
A-Sedge	0	0.0%	A-Se	edge	0	0.0%	
Cryptogam	0	0.0%					
P	HYSIO	SNOMIC RELAT	PIVE IM	IPORTANCE	VALUES		
PHYSIOGNOMY		FRQ	COV	RFRQ	RCOV	RIV	
Nt P-Forb		94	1601	53.7	39.8	46.8	
Nt P-Sedge		27	981	15.4	24.4	19.9	
Ad P-Grass		16	710	9.1	17.7	13.4	
Nt P-Grass		19	376	10.9	9.4	10.1	
Nt W-Vine		10	230	5.7	5.7	5.7	
Nt A-Forb		4	106	2.3	2.6		
Nt Tree		1	1	0.6	0.0	0.3	
Ad P-Forb		1	1	0.6	0.0	0.3	
Nt Shrub		1	5	0.6	0.1	0.3	

Nt B-Forb	1	5	0.6	0.1	0.3
Ad B-Forb	1	5	0.6	0.1	0.3

SPECIES	RELAT	IVE IMPOR	PANCE V	ALUES			
SCIENTIFIC NAME	C	WETNESS	FRO	COV	RFRO	RCOV	RIV
AGROSTIS ALBA	C	FACW	15	685	8.6	17.0	12.8
Solidago altissima	1	FACU	15	291	8.6	7.2	7.9
Carex sartwellii	6	(OBL)	8	350	4.6	8.7	6.6
Aster simplex	3	OBL	13	225	7.4	5.6	6.5
Rhus radicans	2	FAC+	10	230	5.7	5.7	5.7
Carex tribuloides	3	FACW+	8	255	4.6	6.3	5.5
Helianthus grosseserratus	2	FACW-	8	251	4.6	6.2	5.4
Scirpus fluviatilis	4	OBL	6	226	3.4	5.6	4.5
Lycopus uniflorus	7	OBL	8	141	4.6	3.5	4.0
Glyceria striata	4	[FACW]	5	150	2.9	3.7	3.3
Prunella vulgaris lanceolata	0	• •	8	80	4.6	2.0	3.3
Calamagrostis canadensis	3	OBL	6	110	3.4	2.7	3.1
Geum laciniatum trichocarpum	2	FACW	5	130	2.9	3.2	3.0
Lycopus americanus	5	OBL	7	63	4.0	1.6	2.8
Carex annectens	5	FACW	4	100	2.3	2.5	2.0
Pilea pumila		FACW	3	105	1.7	2.6	2.4
Viola sororia		FAC-	6	42	3.4	1.0	2.2
Agrimonia gryposepala		FACU+	3 3	100	1.7	2.5	2.2
Elymus virginicus		FACW-	4	60	2.3	1.5	2.1
Leersia oryzoides		OBL	4	56	2.3	1.3	1.9
Verbena hastata		FACW+	4	56	2.3	1.4	1.8
Iris virginica shrevei		OBL	2	75	1.1	1.9	1.5
Fragaria virginiana	-	FAC-	4	12	2.3	0.3	1.3
Vernonia missurica		FAC+	2	50	1.1	1.2	1.2
Carex stricta		OBL	ĩ	50	0.6	1.2	0.9
Helenium autumnale		FACW+	2	6	1.1	0.1	0.5
Juncus dudleyi		[FAC]	1	25	0.6	0.1	0.6
Mentha arvensis villosa		[OBL]	1	25	0.6	0.6	0.6
POA PRATENSIS		FAC~	1	25	0.6	0.6	0.6
Typha latifolia		OBL	1	25	0.6	0.6	0.6
Bidens frondosa		FACW	î	1	0.6	0.0	0.8
Cirsium muticum		OBL	1	5	0.6	0.0	0.3
Crataegus mollis	2	FACU-	1	1	0.6	0.0	0.3
DAUCUS CAROTA		UPL	1	5	0.6	0.1	0.3
Eupatorium perfoliatum		FACW+	1	1	0.6	0.0	0.3
Galium obtusum		FACW+	1	1	0.6	0.0	0.3
Ludwigia palustris americana		OBL	1	1	0.6	0.0	0.3
Oxalis europaea	0	FACU	1	1	0.6	0.0	0.3
Salix interior		OBL	1	5	0.6	0.0	0.3
SONCHUS ULIGINOSUS		FAC-	1	1	0.6	0.0	0.3
	Ũ		175	4021	0.0	0.0	0.5
			2.2	2021			

ACRONYM	C SCIENTIFIC NAME	W WETNESS	PHYSIOGNOMY	COMMON NAME
AGRGRY	2 Agrimonia gryposepala	2 FACU+	Nt P-Forb	TALL AGRIMONY
AGRALA	0 AGROSTIS ALBA	-3 FACW	Ad P-Grass	REDTOP
ASTSIS	3 Aster simplex	-5 OBL	Nt P-Forb	PANICLED ASTER
BIDFRO TICKS	1 Bidens frondosa	-3 FACW	Nt A-Forb	COMMON BEGGAR'S
CALCAN	3 Calamagrostis canadensis	~5 OBL	Nt P-Grass	BLUE JOINT GRASS
CXANNA SEDGE	5 Carex annectens	-3 FACW	Nt P-Sedge	LARGE YELLOW FOX
CXSART	6 Carex sartwellii	-5 [OBL]	Nt P-Sedge	RUNNING MARSH SEDGE
CXSTRI SEDGE	5 Carex stricta	-5 OBL	Nt P-Sedge	COMMON TUSSOCK
CXTRIB	3 Carex tribuloides	-4 FACW+	Nt P-Sedge	AWL-FRUITED OVAL
CIRMUT	10 Cirsium muticum	-5 OBL	Nt B~Forb	SWAMP THISTLE
CRAMOL	2 Crataegus mollis	4 FACU-	Nt Tree	DOWNY HAWTHORN

DAUCAR	0 DAUCUS CAROTA	5 UPL	Ad B-Forb	QUEEN ANNE'S LACE
ELYVIR	4 Elymus virginicus	-2 FACW-	Nt P-Grass	VIRGINIA WILD RYE
EUPPER	4 Eupatorium perfoliatum	-4 FACW+	Nt P-Forb	COMMON BONESET
FRAVIR	l Fragaria virginiana	1 FAC-	Nt P-Forb	WILD STRAWBERRY
GALOBT	5 Galium obtusum	-4 FACW+	Nt P-Forb	WILD MADDER
GEULAT	2 Geum laciniatum trichocarpum	-3 FACW	Nt P-Forb	ROUGH AVENS
GLYSTR	4 Glyceria striata	-3 [FACW]	Nt P-Grass	FOWL MANNA GRASS
HELAUT	5 Helenium autumnale	-4 FACW+	Nt P-Forb	SNEEZEWEED
HELGRO	2 Helianthus grosseserratus	-2 FACW-	Nt P-Forb	SAWTOOTH SUNFLOWER
IRIVIS	5 Iris virginica shrevei	-5 OBL	Nt P-Forb	BLUE FLAG
JUNDUD	4 Juncus dudleyi	0 [FAC]	Nt P-Forb	DUDLEY'S RUSH
LEEORY	4 Leersia oryzoides	-5 OBL	Nt P-Grass	RICE CUT GRASS
LUDPAA	5 Ludwigia palustris americana	-5 OBL	Nt P-Forb	MARSH PURSLANE
LYCAME HOREHOUND	5 Lycopus americanus	-5 OBL	Nt P-Forb	COMMON WATER
LYCUNI	7 Lycopus uniflorus	-5 OBL	Nt P-Forb	NORTHERN BUGLE WEED
MENARV	5 Mentha arvensis villosa	-5 [OBL]	Nt P-Forb	WILD MINT
OXAEUR	0 Oxalis europaea	3 FACU	Nt P-Forb	TALL WOOD SORREL
PILPUM	5 Pilea pumila	-3 FACW	Nt A-Forb	CLEARWEED
POAPRA	0 POA PRATENSIS	1 FAC-	Ad P~Grass	KENTUCKY BLUE GRASS
PRUVLA	0 Prunella vulgaris lanceolata	3 [FACU]	Nt P-Forb	SELF HEAL
RHURAD	2 Rhus radicans	-1 FAC+	Nt W-Vine	POISON IVY
SALINT	1 Salix interior	-5 OBL	Nt Shrub	SANDBAR WILLOW
SCIFLU	4 Scirpus fluviatilis	-5 OBL	Nt P-Sedge	RIVER BULRUSH
SOLALT	l Solidago altissima	3 FACU	Nt P-Forb	TALL GOLDENROD
SONULI	0 SONCHUS ULIGINOSUS	1 FAC-	Ad P-Forb	COMMON SOW THISTLE
TYPLAT CATTAIL	1 Typha latifolia	-5 OBL	Nt P-Forb	BROAD-LEAVED
VERHAS	4 Verbena hastata	-4 FACW+	Nt P-Forb	BLUE VERVAIN
VERMIS	4 Vernonia missurica	-1 FAC+	Nt P-Forb	MISSOURI IRONWEED
VIOSOR	3 Viola sororia	1 FAC-	Nt P-Forb	COMMON BLUE VIOLET

• • • • • • • • • • •

-

Site:	Goodenow Grove, Will County, Illinois
Locale:	CTAP GW-1 Shrub Plot
Date:	September 1, 2004 five hours
By:	Earth Tech
File:	c:\FQA\studies\BaselineReport\CTAP GW-1 Shrub Plot .tra

_

				TRAN	NSECT DA	ATA, QUA	ADRAT			
QUAD	MC	W/Ad	FQI	W/Ađ	MW	W/Ad	NS	TS	MW SEO	W/Ad
1	1.3	1.3	2.3	2.3	-1.0	-1.0	3	3	-1.0	-0.2
2	1.3	1.0	2.3	2.0	-1.0	0.5	3	4	-1.8	-1.3
3	1.0	1.0	1.4	1.4	-3.5	-3.5	2	2	-1.8	-1.3
4	1.3	1.3	2.3	2.3	-1.0	-1.0	3	3	-2.2	-2.2
AVG STD	1.3 0.2	1.2 0.2	2.1 0.4	2.0 0.4	-1.6 1.3	-1.2 1.7	2.8 0.5	3.0 0.8		

	C 0 1 2 3 4 5 6 7 8 9 10	0 0 8 to	08 7 08		3 NATIVE SPECIES 4 TOTAL SPECIES 1.3 NATIVE MEAN C 1.0 W/Adventives 2.3 NATIVE FQI 2.0 W/Adventives -1.0 NATIVE MEAN W 0.5 W/Adventives
Native	3	75.0%	Adventive	1	25.0%
Tree	1	25.0%	Tree	0	0.0%
Shrub	2	50.0%	Shrub	1	25.0%
W-Vine	0	0.0%	W-Vine	0	0.0%
H-Vine	0	0.0%	H-Vine	0	0.0%
P-Forb	0	0.0%	P-Forb	0	0.0%
B-Forb	0	0.0%	B-Forb	0	0.0%
A-Forb	0	0.0%	A-Forb	0	0.0%
P-Grass	0	0.0%	P-Grass	0	0.0%
A-Grass	0	0.0%	A-Grass	0	0.0%
P-Sedge	0	0.0%	P-Sedge	0	0.0%
A-Sedge	0	0.0%	A-Sedge	0	0.0%
Cryptogam	0	0.0%			

	PHYSIOGNOMIC	RELATIVE	IMPORTANCE	E VALUES	
PHYSIOGNON	fY FI	RQ COV	V RFRQ	RCOV	RIV
Nt Shrub		8 10	5 66.7	80.0	73.3
Nt Tree		3 :	3 25.0	15.0	20.0
Ad Shrub		1	1 8.3	5.0	6.7

	SPECIES RELA	FIVE IMPORT	ANCE VA	LUES			
SCIENTIFIC NAME	(C WETNESS	FRQ	COV	RFRO	RCOV	RIV
Cornus racemosa	:	L FACW-	4	9	33.3	45.0	39.2
Salix interior	:	OBL	4	7	33.3	35.0	34.2
Crataegus mollis	2	PACU-	3	3	25.0	15.0	20.0
ELAEAGNUS UMBELLATA	() UPL	1	1	8.3	5.0	6.7
			12	20			

ACRONYM	C SCIENTIFIC NAME	W WETNESS	PHYSIOGNOMY	COMMON NAME
CORRAC	1 Cornus racemosa	-2 FACW-	Nt Shrub	GRAY DOGWOOD
CRAMOL	2 Crataegus mollis	4 FACU-	Nt Tree	DOWNY HAWTHORN
ELAUMB	0 ELAEAGNUS UMBELLATA	5 UPL	Ad Shrub	AUTUMN OLIVE
SALINT	1 Salix interior	-5 OBL	Nt Shrub	SANDBAR WILLOW

.

: •

Raccoon Grove Nature Preserve CTAP Plots

Site: Locale:	Raccoon Grove Will County, Illinois CTAP RA-4, All Transects, Herbaceous Plot
Date:	September 8, 2004 Four hours
By:	Earth Tech
File:	c:\FQA\studies\BaselineReport\CTAP RA-4 All Transets.tra

•

-

				TRAI	NSECT D	ATA, QU	ADRAT			
QUAD	MC	W/Ad	FQI	W/Ad	MW	W/Ad	NS	TS	MW SEQ	W/Ad
1	3.5	3.5	8.6	8.6	0.3	0.3	6	6	-1.8	-1.8
2	1.5	1.5	2.1	2.1	-4.0	-4.0	2	2	-1.7	-1.7
3	2.0	2.0	4.0	4.0	-1.5	-1.5	4	4	-1.7	-1.7
4	2.5	2.5	5.0	5.0	0.5	0.5	4	4	0.0	0.0
5	4.0	4.0	11.3	11.3	1.1	1.1	8	8	0.8	0.8
6	3.1	3.1	8.8	8.8	0.8	0.8	8	8	0.2	0.2
7	2.5	2.5	5.0	5.0	-1.2	-1.2	4	4	0.2	0.2
8	3.9	3.9	11.0	11.0	1.0	1.0	8	8	0.4	0.4
9	3.6	3.6	8.0	8.0	1.4	1.4	5	5	0.9	0.9
10	4.2	4.2	9.4	9.4	0.4	0.4	5	5	0.9	0.9
11	1.5	1.5	2.1	2.1	1.0	1.0	2	2	0.8	0.8
12	2.5	2.5	6.1	6.1	1.0	1.0	6	6	1.5	1.5
13	3.5	3.5	8.6	8.6	2.5	2.5	6	6	1.1	1.1
14	2.0	2.0	5.7	5.7	-0.1	-0.1	8	8	1.1	1.1
15	2.7	2.7	4.6	4.6	1.0	1.0	3	3	0.3	0.3
16	1.5	1.0	2.1	1.7	0.0	0.0	2	3	0.4	0.4
17	2.6	2.6	7.7	7.7	0.1	0.1	9	9	0.2	0.2
18	3.4	3.4	7.6	7.6	0.4	0.4	5	5	0.8	0.8
19	4.7	4.7	8.1	8.1	2.0	2.0	3	3	0.3	0.3
20	2.0	2.0	4.0	4.0	-1.5	-1.5	4	4	0.8	0.9
21	3.0	2.3	5.2	4.5	2.0	2.3	3	4	-0.1	0.0
22	1.7	1.7	2.9	2.9	-0.7	-0.7	3	3	0.6	0.7
23	2.0	2.0	2.8	2.8	0.5	0.5	2	2	-0.1	-0.1
24	2.0	2.0	2.0	2.0	0.0	0.0	1	1	0.5	0.5
25	4.5	4.5	6.4	6.4	1.0	1.0	2	2	1.0	1.0
26	1.5	1.5	2.1	2.1	2.0	2.0	2	2	1.7	1.7
27	2.7	2.7	4.6	4.6	2.0	2.0	3	3	0.7	0.7
28	6.0	6.0	8.5	8.5	-2.0	-2.0	2	2	0.5	0.5
29	2.7	2.7	9.0	9.0	1.4	1.4	11	11	1.0	1.0
30	4.3	4.3	8.5	8.5	3.5	3.5	4	4	2.4	2.4
AVG	2.9	2.9	6.1	6.0	0.5	0.5	4.5	4.6		
STD	1.1	1.2	2.8	2.9	1.5	1.5	2.5	2.5		

	C 0 1 2 3 4 5 6 7 8 9 10	NUMBER 1 5 9 0 to 5 47. 3 12 1 4 to 4 47. 1 0 8 to 1 4.3	68 7 68 10		42 NATIVE SPECIES 44 TOTAL SPECIES 3.9 NATIVE MEAN C 3.7 W/Adventives 25.0 NATIVE FQI 24.4 W/Adventives 1.0 NATIVE MEAN W 1.0 W/Adventives
Native	42	95.5%	Adventive	2	4.5%
Tree	8	18.2%	Tree	0	0.0%
Shrub	4	9.1%	Shrub	1	2.3%
W-Vine	3	6.8%	W-Vine	0 .	0.0%
H-Vine	1	2.3%	H-Vine	0	0.0%
P-Forb	15	34.1%	P-Forb	.0	0.0%
B-Forb	0	0.0%	B-Forb	1	2.3%
A-Forb	5	11.4%	A-Forb	0	0.0%
P-Grass	3	6.8%	P-Grass	0	0.0%
A-Grass	0	0.0%	A-Grass	0	0.0%
P-Sedge	1	2.3%	P-Sedge	0	0.0%
A-Sedge	0	0.0%	A-Sedge	0	0.0%
Cryptogam	2	4.5%			

PHYSIOGNOMIC RELATIVE IMPORTANCE VALUES

Site:

PHYSIOGNOMY	FRO	cov	RFRO	RCOV	RIV
	rπQ	COV	RF RQ	RCOV	KT V
Nt P-Forb	66	902	48.2	44.2	46.2
Nt W-Vine	24	528	17.5	25.9	21.7
Nt A-Forb	9	179	6.6	8.8	7.7
Nt Tree	15	72	10.9	3.5	7.2
Nt Shrub	9	115	6.6	5.6	6.1
Nt P-Sedge	4	82	2.9	4.0	3.5
Nt P-Grass	5	61	3.6	3.0	3.3
Cryptogam	2	26	1.5	1.3	1.4
Nt H-Vine	1	25	0.7	1.2	1.0
Ad Shrub	1	25	0.7	1.2	1.0
Ad B-Forb	1	25	0.7	1.2	1.0

SPECIES RELATIVE IMPORTANCE VALUES							
SCIENTIFIC NAME	С	WETNESS	FRO	COV	RFRO	RCOV	RIV
SOIL	0		28	1027	17.0	33.5	25.2
Parthenocissus guinguefolia	2	FAC-	16	298	9.7	9.7	9.7
Polygonum virginianum		FAC	17	164	10.3	5.3	7.8
Rhus radicans		FAC+	7	205	4.2	6.7	5.5
Sanicula gregaria		FAC+	6	226	3.6	7.4	5.5
Eupatorium rugosum		UPL	7	156	4.2	5.1	4.7
Bidens frondosa		FACW	5	127	3.0	4.1	3.6
Geum canadense		FAC	7	68	4.2	2.2	3.2
Viola sororia		FAC-	7	61	4.2	2.0	3.1
Boehmeria cylindrica		OBL	6	55	3.6	1.8	2.7
Carex pensylvanica	_	UPL	4	82	2.4	2.7	2.5
Viburnum prunifolium		FACU	5	30	3.0	1.0	2.0
Rubus occidentalis		UPL	2	75	1.2	2.4	1.8
Prunus serotina		FACU	4	32	2.4	1.0	1.7
Galium asprellum		OBL	2	55	1.2	1.8	1.5
Cryptotaenia canadensis		FAC	4	12	2.4	0.4	1.4
Glyceria striata	_	[FACW]	2	30	1.2	1.0	1.4
Leersia virginica		FACW	2	30	1.2	1.0	1.1
Solidago ulmifolia		UPL	1	50	0.6	1.6	1.1
Fraxinus pennsysubintegerrima	-	FAC	3	30	1.8	0.3	1.1
Carya ovata		FACU	2	10	1.8	0.3	0.8
Polemonium reptans	_	FAC	2	10	1.2	0.3	0.8
Ouercus rubra	-	FACU	2	10	1.2	0.3	0.8
ALLIARIA PETIOLATA		FACU	2	25	0.6	•	
Allium tricoccum			2			8:0	0.7
Athyrium filix-femina michauxii		FACU FAC	2	7 25	1.2 0.6	0.2;	0.7 0.7
Galium aparine		FACU	1	25 25	0.6	0.8 0.8	
Laportea canadensis	-	FACU	· 1	25 25	0.6		0.7
Lonicera prolifera	_	FACW UPL	1	∠⊃ 25	0.6	0.8 0.8	0.7
Polygonum hydropiper		FACW	1	25	0.6	0.8	0.7
ROSA MULTIFLORA	-	FACU	1	25	0.6	0.8	0.7
Smilax lasioneura		[UPL]	1	25	0.6	0.8	0.7
Viola pubescens		FACU-	2	7	1.2	0.2	0.7
Crataegus mollis		FACU-	1	5	0.6	0.2	0.4
Ostrya virginiana		FACU-	1	5	0.6	0.2	0.4
Ribes missouriense		UPL	1	5	0.6	0.2	0.4
Rubus allegheniensis		FACU+	1	5	0.6	0.2	0.4
Smilacina racemosa		FACU	1	5	0.6	0.2	0.4
Acalypha rhomboidea	-	FACU	1	1	0.6	0.0	0.3
Arisaema triphyllum	-	FACW-	1	1	0.6	0.0	0.3
Cinna arundinacea		FACW	1	1	0.6	0.0	0.3
Cystopteris fragilis protrusa		FACU	1	1	0.6	0.0	0.3
Pilea pumila		FACW	1	1	0.6	0.0	0.3
Quercus alba		FAC	1	1	0.6	0.0	0.3
Ulmus americana	3	FACW-	1	1	0.6	0.0	0.3
			165	3067			
	•						

	ACRONYM	C SCIENTIFIC NAME	W	WETNESS	PH7	SIOGNOMY	COMMON NAME
	ACARHO MERCURY	0 Acalypha rhomboidea	3	FACU	Nt	A-Forb	THREE-SEEDED
ALLPET		0 ALLIARIA PETIOLATA	0	FAC	Ad	B-Forb	GARLIC MUSTARD
	ALLTRT	7 Allium tricoccum	3	FACU	Nt	P-Forb	WILD LEEK
	ARITRI	4 Arisaema triphyllum	-2	FACW-	Nt	P-Forb	JACK-IN-THE-PULPIT

ATHFIM	8 Athyrium filix-femina michauxii 0 FAC (Cryptogam	LADY FERN
BIDFRO TICKS	1 Bidens frondosa -3 FACW 1	Nt A-Forb	COMMON BEGGAR'S
BOECYC	2 Boehmeria cylindrica -5 OBL 1	Nt P-Forb	FALSE NETTLE
CXPENS	5 Carex pensylvanica 5 UPL 1	Nt P-Sedge	COMMON OAK SEDGE
CAROVT	5 Carya ovata 3 FACU 1	Nt Tree	SHAGBARK HICKORY
CINARU	5 Cinna arundinacea - 3 FACW M	Nt P-Grass	COMMON WOOD REED
CRAMOL	2 Crataegus mollis 4 FACU- M	Nt Tree	DOWNY HAWTHORN
CRYCAN	2 Cryptotaenia canadensis 0 FAC 1	Nt P-Forb	HONEWORT
CYSFRP	6 Cystopteris fragilis protrusa 3 FACU (Cryptogam	FRAGILE FERN
EUPRUG	4 Eupatorium rugosum 5 UPL 1	Nt P-Forb	WHITE SNAKEROOT
FRAPES	l Fraxinus pennsylvanica subintegerrima 0 FAC M	Nt Tree	GREEN ASH
GALAPA	1 Galium aparine 3 FACU M	Nt A-Forb	ANNUAL BEDSTRAW
GALASP	O Galium asprellum -5 OBL M	Nt P-Forb	ROUGH BEDSTRAW
GEUCAN	l Geum canadense 0 FAC N	Nt P-Forb	WOOD AVENS
GLYSTR	4 Glyceria striata -3 [FACW] N	Nt P-Grass	FOWL MANNA GRASS
LAPCAN	3 Laportea canadensis -3 FACW M	Nt P-Forb	WOOD NETTLE
LEEVIR	7 Leersia virginica -3 FACW M	Nt P-Grass	WHITE GRASS
LONPRO	7 Lonicera prolifera 5 UPL N	Nt W-Vine	YELLOW HONEYSUCKLE
OSTVIR	5 Ostrya virginiana 4 FACU- N	Nt Tree	HOP HORNBEAM
PARQUI	2 Parthenocissus quinquefolia 1 FAC- N	Nt W-Vine	VIRGINIA CREEPER
PILPUM	5 Pilea pumila -3 FACW N	Nt A-Forb	CLEARWEED
POLREP	5 Polemonium reptans 0 FAC N	Nt P-Forb	JACOB'S LADDER
POLHYR	2 Polygonum hydropiper -3 FACW N	Nt A-Forb	WATER PEPPER
POLGVI	2 Polygonum virginianum 0 FAC N	Nt P-Forb	WOODLAND KNOTWEED
PRUSER	Prunus serotina 3 FACU N	Nt Tree	WILD BLACK CHERRY
QUEALB	Guercus alba 0 FAC	it Tree	WHITE OAK
QUERUB	/ Quercus rubra 3 FACU N	It Tree	RED OAK
RHURAD	2 Rhus radicans -1 FAC+ N	Nt W-Vine	POISON IVY
RIBMIS	; Ribes missouriense 5 UPL N	It Shrub	WILD GOOSEBERRY
ROSMUL	ROSA MULTIFLORA 3 FACU A	Ad Shrub	MULTIFLORA ROSE
RUBALL	Rubus allegheniensis 2 FACU+ N	lt Shrub	COMMON BLACKBERRY
RUBOCC	Rubus occidentalis 5 UPL N	Jt Shrub	BLACK RASPBERRY
SANGRE SNAKEROOT	Sanicula gregaria -1 FAC+ N	Jt P-Forb	CLUSTERED BLACK
SMIRAC SOLOMON'S		It P-Forb	FEATHERY FALSE
SMILAS FLOWER		Nt H-Vine	COMMON CARRION
SOIL	SOIL 0 nil n	nil	SOIL

•

•

SOLULM GOLDENROD	5 Solidago ulmifolia	5 UPL	Nt P-Forb	ELM-LEAVED
ULMAME	3 Ulmus americana	-2 FACW-	Nt Tree	AMERICAN ELM
VIBPRU	5 Viburnum prunifolium	3 FACU	Nt Shrub	BLACK HAW
VIOPUB	5 Viola pubescens	4 FACU-	Nt P-Forb	YELLOW VIOLET
VIOSOR	3 Viola sororia	1 FAC-	Nt P-Forb	COMMON BLUE VIOLET

.

Site:	Raccoon Grove, Will County, Illinois
Locale:	CTAP RG-1 Grassland Plot
Date:	August 10, 2004 Four hours
By:	Earth Tech
File:	c:\FQA\studies\BaselineReport\CTAP RG-1 Grassland Plot.tra

				TRA	NSECT DA	ATA, QU	ADRAT			
QUAD	MC	W/Ad	FQI	W/Ad	MW	W/Ad	NS	TS	MW SEQ	W/Ad
1	5.0	5.0	8.7	8.7	-1.7	-1.7	3	3	-0.2	-0.2
2	4.0	4.0	9.8	9.8	1.3	1.3	6	6	0.2	0.5
3	4.7	2.8	8.1	6.3	1.0	1.8	3	5	0.4	0.6
4	3.0	3.0	6.0	6.0	-1.2	-1.2	4	4	0.4	0.7
5	3.6	3.6	8.0	8.0	1.6	1.6	5	5	0.5	0.5
6	4.4	4.4	9.8	9.8	1.2	1.2	5	5	1.2	1.3
7	3.3	2.6	9.2	8.2	0.9	1.1	8	10	1.1	1.2
8	3.4	2.8	7.6	6.9	1.2	1.2	5	6	1.5	1.5
9	2.9	2.2	9.2	8.0	2.4	2.3	10	13	1.3	1.4
10	4.7	3.5	11.4	9.9	0.3	0.8	6	8	1.1	1.3
11	4.4	3.5	12.4	11.1	0.6	0.9	8	10	0.6	0.9
12	3.2	2.7	10.1	9.2	0.9	1.1	10	12	1.5	1.5
13	3.6	3.0	8.0	7.3	3.0	2.7	5	6	1.9	. 1.9
14	2.8	2.3	8.3	7.5	1.9	1.9	9	11	2.1	2.0
15	4.3	3.9	13.0	12.3	1.6	1.5	9	10	1.4	1.4
16	2.7	2.5	8.5	8.1	0.7	0.7	3.0	11	1.4	1.3
17	2.5	1.9	6.1	5.3	1.8	1.6	6	8	1.4	1.5
18	3.0	2.3	9.5	8.3	1.8	2.0	10	13	1.6	1.6
19	3.7	3.1	9.0	8.3	1.2	1.1	6	7	1.6	1.6
20	2.7	2.7	7.2	7.2	1.7	1.7	7	7	1.4	1.4
AVG	3.6	3.1	9.0	8.3	1.1	1.2	6.8	8.0		
STD	0.8	0.8	1.8	1.7	1.1	1.0	2.4	3.1		

	C 0 1 2 3 4 5 6 7 8 9 10	NUMBER 3 4 5 0 to 2 50.0 5 2 4 to 1 46.0 0 8 to 5 1 3.6	7 18 10		28 NATIVE SPECIES 34 TOTAL SPECIES 3.4 NATIVE MEAN C 2.8 W/Adventives 17.8 NATIVE FQI 16.1 W/Adventives 0.6 NATIVE MEAN W 1.0 W/Adventives
Native	28	82.4%	Adventive	6	17.6%
Tree	0	0.0%	Tree	0	0.0%
Shrub	2	5.9%	Shrub	1	2.9%
W-Vine	1	2.9%	W-Vine	0	0.0%
H-Vine	0	0.0%	H-Vine	0	0.0%
P-Forb	18	52.9%	P-Forb	3	8.8%
B-Forb	0	0.0%	B-Forb	1	2.9%
A-Forb	2	5.9%	A-Forb	0	0.0%
P-Grass	3	8.8%	P-Grass	1	2.9%
A-Grass	0	0.0%	A-Grass	0	0.0%
P-Sedge	2	5.9%	P-Sedge	0	0.0%
A-Sedge	0	0.0%	A~Sedge	0	0.0%
Cryptogam	0	0.0%			

P-Seuge	2	5.98	P-Se	age	0	0.0%
A-Sedge	0	0.0%	A-Se	dge	0	0.0%
Cryptogam	0	0.0%				
	PHYSIOGNO	MIC REL	ATIVE IM	PORTANCE	VALUES	
PHYSIOGNO	ſΥ	FRQ	COV	RFRQ	RCOV	RIV
Nt P-Forb		81	982	50.6	35.0	42.8
Nt P-Grass	5	35	1032	21.9	36.8	29.3
Ad P-Grass	5	14	341	8.8	12.1	10.4
Nt Shrub		11	215	6.9	7.7	7.3
Nt P-Sedge	è	4	150	2.5	5.3	3.9
Ad Shrub		5	65	3.1	2.3	2.7
Ad P-Forb		4	8	2.5	0.3	1.4
Nt A-Forb		3	3	1.9	0.1	1.0
Ad B-Forb		2	6	1.3	0.2	0.7

Nt W-Vine	1	5	0.6	0.2	0.4
-					

	RELAT	IVE IMPOR	FANCE VA	LUES			
SCIENTIFIC NAME	С	WETNESS	FRQ	COV	RFRQ	RCOV	RIV
Andropogon gerardii	5	FAC-	20	805	12.5	28.7	20.6
POA PRATENSIS	0	FAC-	14	341	8.8	12.1	10.4
Solidago juncea	5	UPL	12	237	7.5	8.4	8.0
Aster ericoides	5	FACU-	13	193	8.1	6.9	7.5
Cornus racemosa	1	FACW-	10	190	6.3	6.8	6.5
Panicum implicatum	2	FAC-	9	97	5.6	3.5	4.5
Panicum virgatum	5	FAC+	6	130	3.8	4.6	4.2
Rudbeckia hirta	1	FACU	8	96	5.0	3.4	4.2
Fragaria virginiana	1	FAC-	8	72	5.0	2.6	3.8
Solidago graminifolia	4	FACW-	7	47	4.4	1.7	3.0
Solidago riddellii	7	OBL	5	81	3.1	2.9	3.0
ROSA MULTIFLORA	0	FACU	5	65	3.1	2.3	2.7
Solidago altissima	1	FACU	5	65	3.1	2.3	2.7
Agrimonia gryposepala	2	FACU+	4	60	2.5	2.1	2.3
Carex granularis	4	FACW+	3	75	1.9	2.7	2.3
Antennaria plantaginifolia	3	UPL	4	40	2.5	1.4	2.0
Eleocharis acicularis	2	OBL	1	75	0.6	2.7	1.6
Coreopsis palmata	6	UPL	2	26	1.3	0.9	1.1
Juncus tenuis	0	[FACU+]	3	11	1.9	0.4	1.1
Potentilla simplex	4	FACU-	3	11	1.9	0.4	1.1
Lycopus americanus	5	OBL	1	25	0.6	0.9	0.8
Rubus allegheniensis	3	FACU+	1	25	0.6	0.9	0.8
DAUCUS CAROTA	0	UPL	2	6	1.3	0.2	0.7
Oxalis europaea	0	FACU	2	2	1.3	0.1	0.7
Polygala sanguinea	6	FACU	2	2	1.3	0.1	0.7
TRIFOLIUM REPENS	0	FACU+	2	2	1.3	0.1	0.7
ACHILLEA MILLEFOLIUM	0	FACU	1	5	0.6	0.2	0.4
Aster novae-angliae	4	FACW	1	5	0.6	0.2	0.4
Aster ptarmicoides	10	[FAC]	1	5	0.6	0.2	0.4
Rhus radicans	2	FAC+	1	5	0.6	0.2	0.4
Tradescantia ohiensis	2	FACU+	1	5	0.6	0.2	0.4
Ambrosia artemisiifolia elatior		FACU	1	1	0.6	0.0	0.3
Erigeron philadelphicus		FACW	1	1	0.6	0.0	0.3
SONCHUS ULIGINOSUS	0	FAC-	1	1	0.6	0.0	0.3

160 2807

•

•

-

٦,

ACRONYM	C SCIENTIFIC NAME	W WETNESS PHYSIOGNOMY COMMON NAME
ACHMIL	0 ACHILLEA MILLEFOLIUM	3 FACU Ad P-Forb YARROW
AGRGRY	2 Agrimonia gryposepala	2 FACU+ Nt P-Forb TALL AGRIMONY
AMBARE	0 Ambrosia artemísiifolia elatior	3 FACU Nt A-Forb COMMON RAGWEED
ANDGER	5 Andropogon gerardii	1 FAC- Nt P-Grass BIG BLUESTEM GRASS
ANTPLA	3 Antennaria plantaginifolia	5 UPL Nt P-Forb PUSSY TOES
ASTERI	5 Aster ericoides	4 FACU- Nt P-Forb HEATH ASTER
ASTNOV	4 Aster novae-angliae	-3 FACW Nt P-Forb NEW ENGLAND ASTER
ASTPTA	10 Aster ptarmicoides	0 [FAC] Nt P-Forb STIFF ASTER
CXGRAN	4 Carex granularis	-4 FACW+ Nt P-Sedge PALE SEDGE
CORPAL	6 Coreopsis palmata	5 UPL Nt P-Forb PRAIRIE COREOPSIS
CORRAC	1 Cornus racemosa	-2 FACW- Nt Shrub GRAY DOGWOOD
DAUCAR	0 DAUCUS CAROTA	5 UPL Ad B-Forb QUEEN ANNE'S LACE
ELEACI	2 Eleocharis acicularis	-5 OBL Nt P-Sedge NEEDLE SPIKE RUSH
ERIPHI	4 Erigeron philadelphicus	-3 FACW Nt P-Forb MARSH FLEABANE
FRAVIR	l Fragaria virginiana	1 FAC- Nt P-Forb WILD STRAWBERRY

JUNTEN	0 Juncus tenuis	2 [FACU+]	Nt P-Forb	PATH RUSH
LYCAME HOREHOUND	5 Lycopus americanus	-5 OBL	Nt P-Forb	COMMON WATER
OXAEUR	0 Oxalis europaea	3 FACU	Nt P-Forb	TALL WOOD SORREL
PANIMP GRASS	2 Panicum implicatum	1 FAC-	Nt P-Grass	OLD-FIELD PANIC
PANVIR	5 Panicum virgatum	~1 FAC+	Nt P-Grass	SWITCH GRASS
POAPRA	0 POA PRATENSIS	1 FAC-	Ad P-Grass	KENTUCKY BLUE GRASS
POLSAN	6 Polygala sanguinea	3 FACU	Nt A-Forb	FIELD MILKWORT
POTSIS	4 Potentilla simplex	4 FACU-	Nt P-Forb	COMMON CINQUEFOIL
RHURAD	2 Rhus radicans	-1 FAC+	Nt W-Vine	POISON IVY
ROSMUL	0 ROSA MULTIFLORA	3 FACU	Ad Shrub	MULTIFLORA ROSE
RUBALL	3 Rubus allegheniensis	2 FACU+	Nt Shrub	COMMON BLACKBERRY
RUDHIR	l Rudbeckia hirta	3 FACU	Nt P-Forb	BLACK-EYED SUSAN
SOLALT	1 Solidago altissima	3 FACU	Nt P-Forb	TALL GOLDENROD
SOLGRG GOLDENROD	4 Solidago graminifolia	-2 FACW-	Nt P-Forb	COMMON GRASS-LEAVED
SOLJUN	5 Solidago juncea	5 UPL	Nt P-Forb	EARLY GOLDENROD
SOLRID	7 Solidago riddellii	-5 OBL	Nt P-Forb	RIDDELL'S GOLDENROD
SONULI	0 SONCHUS ULIGINOSUS	1 FAC-	Ad P-Forb	COMMON SOW THISTLE
TRAOHI	2 Tradescantia ohiensis	2 FACU+	Nt P-Forb	COMMON SPIDERWORT
TRIREP	0 TRIFOLIUM REPENS	2 FACU+	Ad P-Forb	WHITE CLOVER
				:

. .

Site:	Raccoon Grove, Will County, Illinois
Locale:	CTAP RA-4 All Transects Shrub Plot
Date:	September 8, 2004 Six hours
By:	Earth Tech
File:	c:\FQA\studies\BaselineReport\CTAP RA-4 All Transects Shrub Plot.tra

TRANSECT DATA, QUADRAT										
QUAD	MC	W/Ad	FQI	W/Ad	MW	W/Ad	NS	TS	MW SEQ	W/Ad
1	2.0	1.0	2.0	1.4	5.0	4.0	1	2	2.5	2.7
2	2.0	1.0	2.0	1.4	0.0	1.5	1	2	2.3	2.5
3	1.5	1.5	2.1	2.1	2.0	2.0	2	2	1.5	2.0
4	2.0	2.0	2.8	2.8	2.5	2.5	2	2	1.5	1.5
5	2.0	2.0	2.8	2.8	0.0	0.0	2	2	2.3	2.3
6	3.5	3.5	4.9	4.9	4.5	4.5	2	2	2.2	2.2
7	2.7	2.7	4.6	4.6	2.0	2.0	3	3	3.2	3.2
8	5.0	5.0	5.0	5.0	3.0	3.0	1	1	2.7	2.8
9	5.0	2.5	5.0	3.5	3.0	3.5	1	2	2.8	2.9
10	1.3	1.3	2.3	2.3	2.3	2.3	3	3	2.8	2.9
11	5.0	2.5	5.0	3.5	3.0	3.0	1	2	2.3	2.3
12	4.3	4.3	7.5	7.5	1.7	1.7	3	3	2.2	2.2
13	3.0	3.0	5.2	5.2	2.0	2.0	3	3	2.9	2.6
14	2.0	1.0	2.0	1.4	5.0	4.0	1	2	3.7	3.3
15	3.5	3.5	4.9	4.9	4.0	4.0	2	2	4.5	4.0
AVG	3.0	2.5	3.9	3.6	2.7	2.7	1.9	2.2		
STD	1.3	1.2	1.7	1.8	1.5	1.2	0.8	0.6		

	C 0 1 2 3 4 5 6 7 8 9 1.0	NUMBER 0 2 5 0 to 2 75. 0 3 0 4 to 0 25. 0 8 to 0 0.	0% 7 0% 10		12 NATIVE SPECIE 14 TOTAL SPECIES 2.8 NATIVE MEAN C 2.4 W/Adventiv 9.5 NATIVE FQI 8.8 W/Adventiv 2.0 NATIVE MEAN W 2.2 W/Adventiv	es
Native	12	85.7%	Adventive	2 .	14.3%	: •
Tree	7	50.0%	Tree	0	0.0%	
Shrub	3	21.4%	Shrub	2	14.3%	
W-Vine	2	14.3%	W-Vine	0	0.0%	
H-Vine	0	0.0%	H-Vine	0	0.0%	
P-Forb	0	0.0%	P-Forb	0	0.0%	
B-Forb	0	0.0%	B-Forb	0	0.0%	
A-Forb	0	0.0%	A-Forb	0	0.0%	
P-Grass	0	0.0%	P-Grass	0	0.0%	
A-Grass	0	0.0%	A-Grass	0	0.0%	
P-Sedge	0	0.0%	P-Sedge	0	0.0%	
A-Sedge	0	0.0%	A-Sedge	0	0.0%	
Cryptogam	0	0.0%	-			

	PHYSIOGNOMIC	C RELATI	VE IMPC	RTANCE V	ALUES	
PHYSIOGNON	1Y 1	FRQ	COV	RFRQ	RCOV	RIV
Nt Tree		20	21	60.6	52.5	56.6
Ad Shrub		5	8	15.2	20.0	17.6
Nt W-Vine		4	6 ·	12.1	15.0	13.6
Nt Shrub		4	5	12.1	12.5	12.3
			•			

SPECIES RELATIVE IMPORTANCE VALUES						
SCIENTIFIC NAME	C WETNESS	FRQ	COV	RFRQ	RCOV	RIV
Carya ovata	5 FACU	6	6	18.2	15.0	16.6
ROSA MULTIFLORA	0 FACU	4	7	12.1	17.5	14.8
Prunus serotina	1 FACU	4	5	12.1	12.5	12.3
Crataegus mollis	2 FACU-	4	4	12.1	10.0	11.1
Parthenocissus guinquefolia	2 FAC-	2	3	6.1	7.5	6.8
Rhus radicans	2 FAC+	2	3	6.1	7.5	6.8

-

Rubus occidentalis	2 UPL	2	3	6.1	7.5	6.8
Crataegus crus-galli	2 FAC	2	2	6.1	5.0	5.5
Ostrya virginiana	5 FACU~	2.	2	6.1	5.0	5.5
BERBERIS THUNBERGII	0 FACU-	l	1	3.0	2.5	2.8
Fraxinus pennsysubintegerrima	1 FAC	1	1	3.0	2.5	2.8
Ribes missouriense	5 UPL	1	1	3.0	2.5	2.8
Rubus allegheniensis	3 FACU+	1	1	3.0	2.5	2.8
Ulmus americana	3 FACW-	1	1	3.0	2.5	2.8
		33	40			

ACRONYM	C SCIENTIFIC NAME	W WETNESS PHYSIOGNOMY CO	MMON NAME
BERTHU	0 BERBERIS THUNBERGII	4 FACU- Ad Shrub JA	PANESE BARBERRY
CAROVT	5 Carya ovata	3 FACU Nt Tree SH	AGBARK HICKORY
CRACRU	2 Crataegus crus-galli	0 FAC Nt Tree CO	CKSPUR HAWTHORN
CRAMOL	2 Crataegus mollis	4 FACU- Nt Tree DO	WNY HAWTHORN
FRAPES	1 Fraxinus pennsylvanica subintegerrima	0 FAC Nt Tree GRI	EEN ASH
OSTVIR	5 Ostrya virginiana	4 FACU- Nt Tree HO	P HORNBEAM
PARQUI	2 Parthenocissus quinquefolia	1 FAC- Nt W-Vine VII	RGINIA CREEPER
PRUSER	1 Prunus serotina	3 FACU Nt Tree WII	LD BLACK CHERRY
RHURAD	2 Rhus radicans	-1 FAC+ Nt W-Vine POI	ISON IVY
RIBMIS	5 Ribes missouriense	5 UPL Nt Shrub WII	LD GOOSEBERRY
ROSMUL	0 ROSA MULTIFLORA	3 FACU Ad Shrub MUI	LTIFLORA ROSE
RUBALL	3 Rubus allegheniensis	2 FACU+ Nt Shrub CON	MON BLACKBERRY
RUBOCC	2 Rubus occidentalis	5 UPL Nt Shrub BLA	ACK RASPBERRY
ULMAME	3 Ulmus americana	-2 FACW- Nt Tree AME	ERICAN ELM
		:	

. ••• •

File Information(printed March 14, 2006 4:45:07 pm)site:Raccoon Grove, Will County, Illinois

.

.

Locale:	CTAP RA-4 All Transects Shrub Plot
Date:	September 8, 2004 Six hours
By:	Earth Tech

Transect String

Quadrat 1

ROSMUL 1

RUBOCC 1

Quadrat 2

CRACRU 1

ROSMUL 1

Quadrat 3

÷ .

	PRUSER	1	
	PARQUI	. 1	
		:	
Quadrat	4		
	PRUSER	2	
	RUBALL	1	
			•
Quadrat	5		•
	RHURAD	1	
	PARQUI	2	

Quadrat 6

RIBMIS 1 CRAMOL 1

Quadrat 7

t 7

- PRUSER 1
- CRACRU 1
- CAROVT 1

Quadrat 8

CAROVT 1

Quadrat 9

- CAROVT 1
- BERTHU 1

Quadrat 10

- PRUSER 1 FRAPES 1
- CRAMOL 1

- Quadrat 11 CAROVT 1
 - ROSMUL 4

Quadrat 12

- ULMAME 1
 - .
 - CAROVT 1
 - OSTVIR 1

••••

- Quadrat 13
 - RHURAD 2
 - CAROVT 1
 - CRAMOL 1

Quadrat 14

- ROSMUL 1
- RUBOCC 2

Quadrat 15

۰.

: .

. ••• , CRAMOL 1 OSTVIR 1

Monee Reservoir CTAP Plot

Site: Locale: Date: By:	Monee Reservoir, Will County, Illinois CTAP MG-1 Herbaceous Plot August 11, 2004 Five hours Earth Tech
DY:	Earth Tech
File:	c:\FQA\studies\BaselineReport\CTAP MG-1 Monee Grassland Plot.tra

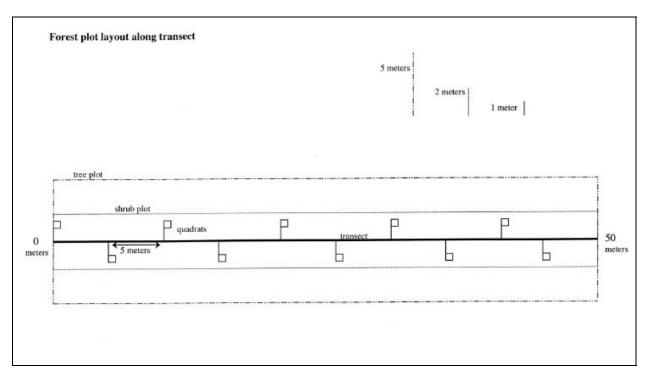
QUAD MC W/Ad FQI W/Ad MW W/Ad NS TS MW SEQ W/Ad 1 3.3 2.0 5.8 4.5 3.0 2.4 3 5 2.5 2.3 2 3.0 1.2 4.2 2.7 2.0 2.2 2 5 2.0 1.9 4 3.7 2.2 6.4 4.9 2.7 2.4 3 5 1.6 1.7 5 4.8 3.4 10.7 9.1 1.4 1.6 5 7 2.1 2.1 6 3.3 2.5 8.2 7.1 2.3 2.4 6 8 2.1 2.2 7 3.6 2.8 9.4 8.3 2.4 2.6 8 2.4 2.6 9 3.8 3.0 7.5 6.7 2.3 2.4 4 5 2.0 2.2 10 2.7 2.3 6.5					TRAN	SECT DA	ATA, QU	ADRAT			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	QUAD	MC		FQI	W/Ad	MW	W/Ad	NS	TS	MW SEQ	W/Ad
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3.3	2.0	5.8	4.5	3.0	2.4	3	5	2.5	2.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3.0	1.2	4.2	2.7	2.0	2.2	2	5	2.0	1.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2.4	1.9	6.4	5.7	0.9	1.1	7	9	1.8	1.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3.7	2.2	6.4	4.9	2.7	2.4	3	5		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	4.8	3.4	10.7	9.1	1.4	1.6	5	7		
73.62.89.48.32.42.8792.42.684.53.06.45.22.52.7232.42.693.83.07.56.72.32.4452.02.2102.72.36.56.01.31.6671.61.5113.71.86.44.51.30.7361.31.2123.42.47.66.41.21.4571.81.6133.32.58.27.13.02.8682.02.1143.22.77.26.51.82.0562.32.4154.03.28.07.22.32.4452.12.3163.42.87.66.92.42.5562.12.4173.32.26.55.31.82.2462.32.5183.62.910.39.22.92.98102.32.4192.51.96.15.32.32.3682.72.6204.03.49.89.12.82.6672.62.4		3.3	2.5	8.2	7.1	2.3	2.4	6	8		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	3.6	2.8	9.4	8.3	2.4	2.8	7	9		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4.5	3.0	6.4	5.2	2.5	2.7	2			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	3.8	3.0	7.5	6.7	2.3	2.4	4			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	2.7	2.3	6.5	6.0	1.3	1.6	6			
12 3.4 2.4 7.6 6.4 1.2 1.4 5 7 1.8 1.6 13 3.3 2.5 8.2 7.1 3.0 2.8 6 8 2.0 2.1 14 3.2 2.7 7.2 6.5 1.8 2.0 5 6 2.3 2.4 15 4.0 3.2 8.0 7.2 2.3 2.4 4 5 2.1 2.3 16 3.4 2.8 7.6 6.9 2.3 2.4 4 5 2.1 2.3 16 3.4 2.8 7.6 6.9 2.4 2.5 5 6 2.1 2.4 17 3.3 2.2 6.5 5.3 1.8 2.2 4 6 2.3 2.5 18 3.6 2.9 10.3 9.2 2.9 2.9 8 10 2.3 2.4 19 2.5 1.9 6.1 5.3 2.3 2.3 6 8 2.7 2.6 2.4 <t< td=""><td>11</td><td>3.7</td><td>1.8</td><td>6.4</td><td>4.5</td><td>1.3</td><td>0.7</td><td>3</td><td>6</td><td></td><td></td></t<>	11	3.7	1.8	6.4	4.5	1.3	0.7	3	6		
13 3.3 2.5 8.2 7.1 3.0 2.8 6 8 2.0 2.1 14 3.2 2.7 7.2 6.5 1.8 2.0 5 6 2.3 2.4 15 4.0 3.2 8.0 7.2 2.3 2.4 4 5 2.1 2.3 16 3.4 2.8 7.6 6.9 2.4 2.5 5 6 2.1 2.4 17 3.3 2.2 6.5 5.3 1.8 2.2 4 6 2.3 2.5 18 3.6 2.9 10.3 9.2 2.9 2.9 8 10 2.3 2.4 19 2.5 1.9 6.1 5.3 2.3 2.3 6 8 2.7 2.6 20 4.0 3.4 9.8 9.1 2.8 2.6 6 7 2.6 2.4	12	3.4	2.4	7.6	6.4	1.2	1.4	5			
14 3.2 2.7 7.2 6.5 1.8 2.0 5 6 2.3 2.4 15 4.0 3.2 8.0 7.2 2.3 2.4 4 5 2.1 2.3 16 3.4 2.8 7.6 6.9 2.4 2.5 5 6 2.1 2.4 17 3.3 2.2 6.5 5.3 1.8 2.2 4 6 2.3 2.4 17 3.3 2.2 6.5 5.3 1.8 2.2 4 6 2.3 2.5 18 3.6 2.9 10.3 9.2 2.9 2.9 8 10 2.3 2.4 19 2.5 1.9 6.1 5.3 2.3 2.3 6 8 2.7 2.6 20 4.0 3.4 9.8 9.1 2.8 2.6 6 7 2.6 2.4	13	3.3	2.5	8.2	7.1	3.0	2.8	6	8		
15 4.0 3.2 8.0 7.2 2.3 2.4 4 5 2.1 2.3 16 3.4 2.8 7.6 6.9 2.4 2.5 5 6 2.1 2.4 17 3.3 2.2 6.5 5.3 1.8 2.2 4 6 2.3 2.5 18 3.6 2.9 10.3 9.2 2.9 2.9 8 10 2.3 2.4 19 2.5 1.9 6.1 5.3 2.3 2.6 6 7 2.6 2.4 20 4.0 3.4 9.8 9.1 2.8 2.6 6 7 2.6 2.4 AVG 3.5 2.5 7.5 6.4 2.1 2.2 4.8 6.6	14	3.2	2.7	7.2	6.5	1.8	2.0	5			
16 3.4 2.8 7.6 6.9 2.4 2.5 5 6 2.1 2.4 17 3.3 2.2 6.5 5.3 1.8 2.2 4 6 2.3 2.5 18 3.6 2.9 10.3 9.2 2.9 2.9 8 10 2.3 2.4 19 2.5 1.9 6.1 5.3 2.3 2.3 6 8 2.7 2.6 20 4.0 3.4 9.8 9.1 2.8 2.6 6 7 2.6 2.4	15	4.0	3.2	8.0	7.2	2.3	2.4	4			
17 3.3 2.2 6.5 5.3 1.8 2.2 4 6 2.3 2.5 18 3.6 2.9 10.3 9.2 2.9 2.9 8 10 2.3 2.4 19 2.5 1.9 6.1 5.3 2.3 2.3 6 8 2.7 2.6 20 4.0 3.4 9.8 9.1 2.8 2.6 6 7 2.6 2.4 AVG 3.5 2.5 7.5 6.4 2.1 2.2 4.8 6.6	16	3.4	2.8	7.6	6.9	2.4	2.5	5			
18 3.6 2.9 10.3 9.2 2.9 2.9 8 10 2.3 2.4 19 2.5 1.9 6.1 5.3 2.3 2.3 6 8 2.7 2.6 20 4.0 3.4 9.8 9.1 2.8 2.6 6 7 2.6 2.4 AVG 3.5 2.5 7.5 6.4 2.1 2.2 4.8 6.6	17	3.3	2.2	6.5	5.3	1.8	2.2	4			
19 2.5 1.9 6.1 5.3 2.3 2.3 6 8 2.7 2.6 20 4.0 3.4 9.8 9.1 2.8 2.6 6 7 2.6 2.4 AVG 3.5 2.5 7.5 6.4 2.1 2.2 4.8 6.6	18	3.6	2.9	10.3	9.2	2.9	2.9	8			
20 4.0 3.4 9.8 9.1 2.8 2.6 6 7 2.6 2.4 AVG 3.5 2.5 7.5 6.4 2.1 2.2 4.8 6.6	19	2.5	1.9	6.1	5.3	2.3					
AVG 3.5 2.5 7.5 6.4 2.1 2.2 4.8 6.6	20	4.0	3.4	9.8	9.1	2.8		6			
	AVG	3.5	2.5	7.5	6.4	2.1	2.2	4.8	6.6		
	STD	0.6	0.6	1.6	1.7	0.6					

С	NUMBER		17	NATIVE SPECIES
0	3		25	TOTAL SPECIES
1	1		4.0	NATIVE MEAN C
2	1 0 to 3		2.7	W/Adventives
3	0 29.4%	1	16.5	NATIVE FQI
4	3	:	13.6	W/Adventives
5	6		2.2	NATIVE MEAN W
6	1 4 to 7	· .	2.0	W/Adventives
7	0 58.8%	•		
8	1			
9	1 8 to 10			
10	0 11.8%			

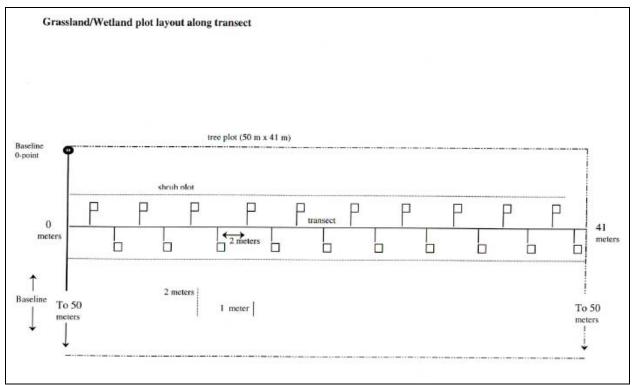
Native	17	68.0%	Adve	ntive	8	32.0%
Tree	1	4.0%	Tree	•	0	0.0%
Shrub	0	0.0%	Shru	ıb	0	0.0%
W-Vine	0	0.0%	W-Vi	ne	. 0	0.0%
H-Vine	0	0.0%	H-Vi	ne	0	0.0%
P-Forb	12	48.0%	P-Fo	rb	3	12.0%
B-Forb	0	0.0%	B-Fo	rb	2	8.0%
A-Forb	1	4.0%	A-Fo	rb	1	4.0%
P-Grass	3	12.0%	P-Gr	ass	2	8.0%
A-Grass	0	0.0%	A-Gr	ass	0	0.0%
P-Sedge	0	0.0%	P-Se	dge	0	80.0
A-Sedge	0	0.0%	A-Se	dge	0	0.0%
Cryptogam	0	0.0%				
•						
	AYSIOG	NOMIC REL	ATIVE IM	PORTANCE	VALUES	
PHYSIOGNOMY		FRQ	COV	RFRQ	RCOV	RIV
Nt P-Forb		61	934	46.2	34.0	40.1
Nt P-Grass		29	1047	22.0	38.1	30.0
Ad B-Forb		19	308	14.4	11.2	12.8
Ad P-Grass		9	367	6.8	13.3	10.1
Ad P-Forb		5	57	3.8	2.1	2.9
Nt A-Forb		5	9	3.8	0.3	2.1
Ad A-Forb		2	26	1.5	0.9	1.2
Nt Tree		2	2	1.5	0.1	0.8

SPECIES	RELAT	IVE IMPOR	FANCE V	ALUES			
SCIENTIFIC NAME	С	WETNESS	FRQ	COV	RFRQ	RCOV	RIV
Andropogon gerardii	5	FAC-	19	836	14.4	30.4	22.4
Solidago altissima	1	FACU	17	362	12.9	13.2	13.0
MELILOTUS ALBA	0	FACU	17	282	12.9	10.3	11.6
POA PRATENSIS	0	FAC-	8	366	6.1	13.3	9.7
Ratibida pinnata	4	UPL	12	172	9.1	6.3	7.7
Sorghastrum nutans	5	FACU+	5	130	3.8	4.7	4.3
Helianthus grosseserratus	2	FACW-	7	75	5.3	2.7	4.0
Silphium integrifolium	5	UPL	6	90	4.5	3.3	3.9
Panicum virgatum	5	FAC+	5	81	3.8	2.9	3.4
Solidago rigida	4	FACU-	5	81	3.8	2.9	3.4
Coreopsis tripteris	5	FAC	5	53	3.8	1.9	2.9
Ambrosia artemisiifolia elatior	0	FACU	5	9	3.8	0.3	2.1
Aster pilosus	0	FACU+	4	16	3.0	0.6	1.8
TRIFOLIUM REPENS	0	FACU+	2	30	1.5	1.1	1.3
DAUCUS CAROTA	0	UPL	2	26	1.5	0.9	1.2
MEDICAGO LUPULINA	0	FAC~	2	26	1.5	0.9	1.2
Acer saccharinum	0	FACW	2	2	1.5	0.1	0.8
Coreopsis palmata	6	UPL	1	25	0.8	0.9	0.8
LOTUS CORNICULATUS	0	FAC-	1	25	0.8	0.9	0.8
Parthenium integrifolium	8	UPL	1	25	0.8	0.9	0.8
Solidago nemoralis	4	UPL	1	25	0.8	0.9	0.8
TARAXACUM OFFICINALE	0	FACU	2	2	1.5	0.1	0.8
Aster ericoides	5	FACU~	1	5	0.8	0.2	0.5
Eryngium yuccifolium	9	FAC+	1	5	0.8	0.2	0.5
PHALARIS ARUNDINACEA	0	FACW+	1	1	0.8	0.0	0.4
			132	2750			

ACRONYM	C SCIENTIFIC NAME	W WETNESS	PHYSIOGNOMY	COMMON NAME
ACESAI	0 Acer saccharinum	-3 FACW	Nt Tree	SILVER MAPLE
AMBARE	O Ambrosia artemisiifolia elatior	3 FACU	Nt A-Forb	COMMON RAGWEED
ANDGER	5 Andropogon gerardii	1 FAC-	Nt P-Grass	BIG BLUESTEM GRASS
ASTERI	5 Aster ericoides	4 FACU-	Nt P-Forb	HEATH ASTER
ASTPIL	0 Aster pilosus	2 FACU+	Nt P-Forb	HAIRY ASTER
CORPÀL	6 Coreopsis palmata	5 UPL	Nt P-Forb	PRAIRIE COREOPSIS
CORTRP	5 Coreopsis tripteris	0 FAC	Nt P-Forb	TALL COREOPSIS
DAUCAR	0 DAUCUS CAROTA	5 UPL	Ad B-Forb	QUEEN ANNE'S LACE
ERYYUC	9 Eryngium yuccifolium	-1 FAC+	Nt P-Forb	RATTLESNAKE MASTER
HELGRO	2 Helianthus grosseserratus	-2 FACW-	Nt P-Forb	SAWTOOTH SUNFLOWER
LOTCOR	0 LOTUS CORNICULATUS	1 FAC-	Ad P-Forb	BIRD'S FOOT TREFOIL
MEDLUP	0 MEDICAGO LUPULINA	1 FAC-	Ad A-Forb	BLACK MEDICK
MELALB	0 MELILOTUS ALBA	3 FACU	Ad B-Forb	WHITE SWEET CLOVER
PANVIR	5 Panicum virgatum	-1 FAC+	Nt P-Grass	SWITCH GRASS
PARINT	8 Parthenium integrifolium	5 UPL	Nt P-Forb	WILD QUININE
PHAARU	0 PHALARIS ARUNDINACEA	-4 FACW+	Ad P-Grass	REED CANARY GRASS
POAPRA	0 POA PRATENSIS	1 FAC-	Ad P-Grass	KENTUCKY BLUE GRASS
RATPIN	4 Ratibida pinnata	5 UPL	Nt P-Forb	YELLOW CONEFLOWER
SILINI	5 Silphium integrifolium	5 UPL	Nt P-Forb	ROSIN WEED
SOLALT	1 Solidago altissima	3 FACU	Nt P-Forb	TALL GOLDENROD


•

SOLNEM	4 Solidago nemoralis	5 UPL	Nt P-Forb	OLD-FIELD GOLDENROD
SOLRIG	4 Solidago rigida	4 FACU-	Nt P-Forb	STIFF GOLDENROD
SORNUT	5 Sorghastrum nutans	2 FACU+	Nt P-Grass	INDIAN GRASS
TAROFF	0 TARAXACUM OFFICINALE	3 FACU	Ad P-Forb	COMMON DANDELION
TRIREP	0 TRIFOLIUM REPENS	2 FACU+	Ad P-Forb	WHITE CLOVER


-

•

Appendix D: Vegetation Monitoring Results

		Bird Plot In	Table D ventory Re		II Strata			
Location	Transect	Habitat	Native Species	All Species	Native FQI	FQI w/ advent.	Native Mean C	Mean C w/ advent.
Monee Reservoir	MA (n=2)	Grassland	4	8	5.0	3.5	2.5	1.3
	MB (n=2)	Grassland	3	6	4.6	3.3	2.7	1.3
Goodenow Grove	GA (n=2)	Grassland	11	12	7.8	7.5	2.4	2.2
	GB (n=3)	Grassland	20	25	12.1	10.8	2.7	2.2
	GC (n=6)	Forest	36	36	23.5	23.5	3.9	3.9
	GD (n=4)	Forest	22	28	14.5	12.9	3.1	2.4
Raccoon Grove	RA (n=7)	Forest	36	38	21.8	21.3	3.6	3.4
	RB (n=4)	Forest	21	21	16.1	16.1	3.5	3.5

				Bird	Plot Trans		le D-1.2 ages for H	lerbaceou	s Strata						
Location	Transect	Habitat	% Native Species	Transect Native Species	Quad Avg Native Species	Transect Total Species	Quad Avg Total Species	Transect Native FQI	Quad Avg Native FQI	Transect FQI w/ advent	Quad Avg FQI w/ advent.	Transect Native Mean C	Quad Avg Native Mean C	Transect Mean C w/ advent.	Quad Avg Mean (w/ advent
Monee Reservoir	MA (n=2)	Grassland	14.3	1	0.3	7	2.3	5.0	1.3	1.9	0.9	5.0	1.3	0.7	0.6
(combined)	MB (n=2)	Grassland													
Goodenow Grove	GA (n=2)	Grassland	83.3	5	3.0	6	4.0	4.5	3.3	4.1	2.8	2.0	2.0	1.7	1.4
	GB (n=3)	Grassland	85	17	6.7	20	8.3	11.9	7.5	11.0	6.8	2.9	3.2	2.5	2.8
	GC (n=6)	Forest	100	20	5.8	20	5.8	14.8	7.8	14.8	7.8	3.3	2.6	3.3	2.6
	GD (n=4)	Forest	70.6	12	4.0	17	5.3	8.9	5.1	7.5	4.4	2.6	2.6	1.8	1.9
Raccoon Grove	RA (n=7)	Forest	96.3	26	5.4	27	5.6	17.7	8.3	17.3	8.1	3.5	3.8	3.3	3.7
	RB (n=4)	Forest	100	15	6.0	15	6.0	13.9	8.2	13.9	8.2	3.6	3.4	3.6	3.4

					Bird Pl		ble D-1.3 Averages for	Shrub Strata							
Location	Transect	Habitat	% Native Species	Transect Native Species	Quad Avg Native Species	Transect Total Species	Quad Avg Total Species	Transect Native FQI	Quad Avg Native FQI	Transect FQI w/ advent	Quad Avg FQI w/ advent.	Transect Native Mean C	Quad Avg Native Mean C	Transect Mean C w/ advent.	Quad Avg Mean C w/ advent.
Monee Reservoir	MA (n=2)	Grassland	100	2	1.0	2	1.0	4.9	2.5	4.9	2.5	3.5	1.8	3.5	1.8
	MB (n=2)	Grassland		0	0.0	0	0.0								
Goodenow Grove	GA (n=2)	Grassland	100	1	0.5	1	0.5	1.0	0.5	1.0	0.5	1.0	0.5	1.0	0.5
	GB (n=3)	Grassland	75	6	3.0	8	4.5	6.1	4.1	5.3	3.3	2.5	2.3	1.9	1.5
	GC (n=6)	Forest	100	17	4.0	17	4.0	16.7	7.4	16.7	7.4	4.1	3.5	4.1	3.5
	GD (n=4)	Forest	78.6	11	6.8	14	8.3	10.6	7.4	9.4	6.7	3.2	2.9	2.5	2.4
Raccoon Grove	RA (n=7)	Forest	81.8	9	1.9	11	2.3	9.0	3.8	8.1	3.5	3.0	2.7	2.5	2.5
	RB (n=4)	Forest	100	3	1.3	3	1.3	5.8	3.0	5.8	3.0	3.3	2.6	3.3	2.6

					Bir	d Plot Trans	Table D-1 sect Averag	.4 Jes for Tree	Strata						
Location	Transect	Habitat	% Native Species	Transect Native Species	Quad Avg Native Species	Transect Total Species	Quad Avg Total Species	Transect Native FQI	Quad Avg Native FQI	Transect FQI w/ advent	Quad Avg FQI w/ advent.	Transect Native Mean C	Quad Avg Native Mean C	Transect Mean C w/ advent.	Quad Avg Mean C w/ advent.
Monee Reservoir	MA (n=2)	Grassland		0		0									
	MB (n=2)	Grassland		0		0									
Goodenow Grove	GA (n=2)	Grassland	100	5	3.0	5	3.0	6.7	4.9	6.7	4.9	3.0	2.8	3.0	2.8
	GB (n=3)	Grassland	100	4	1.7	4	1.7	4.5	3.3	4.5	3.3	2.3	2.5	2.3	2.3
	GC (n=6)	Forest	100												
	GD (n=4)	Forest	100												
Raccoon Grove	RA (n=7)	Forest	100	9	2.7	9	2.7	12.3	6.1	12.3	6.1	4.1	3.6	4.1	3.6
	RB (n=4)	Forest	100	7	2.5	7	2.5	9.4	6.1	9.4	6.1	3.6	3.9	9.4	3.9

_	·	CTAP Plot I	Table I nventory R		all Strata			
Location	Plot	Habitat	Native Species	All Species	Native FQI	FQI w/ advent.	Native Mean C	Mean C w/ advent.
Monee Reservoir	MG-1	Grassland	32.0	40.0	22.6	20.2	4.0	3.2
Goodenow Grove	GC-2	Forest	53.0	54.0	26.5	26.3	3.6	3.5
	GA-3	Grassland	40.0	47.0	20.7	19.1	3.3	2.8
	GW-1	Wetland	51.0	59.0	25.9	24.1	3.6	3.1
Raccoon Grove	RG-1	Grassland	27.0	33.0	17.9	16.2	3.4	2.8
	RA-4	Forest	50.0	53.0	29.1	28.3	4.1	3.9

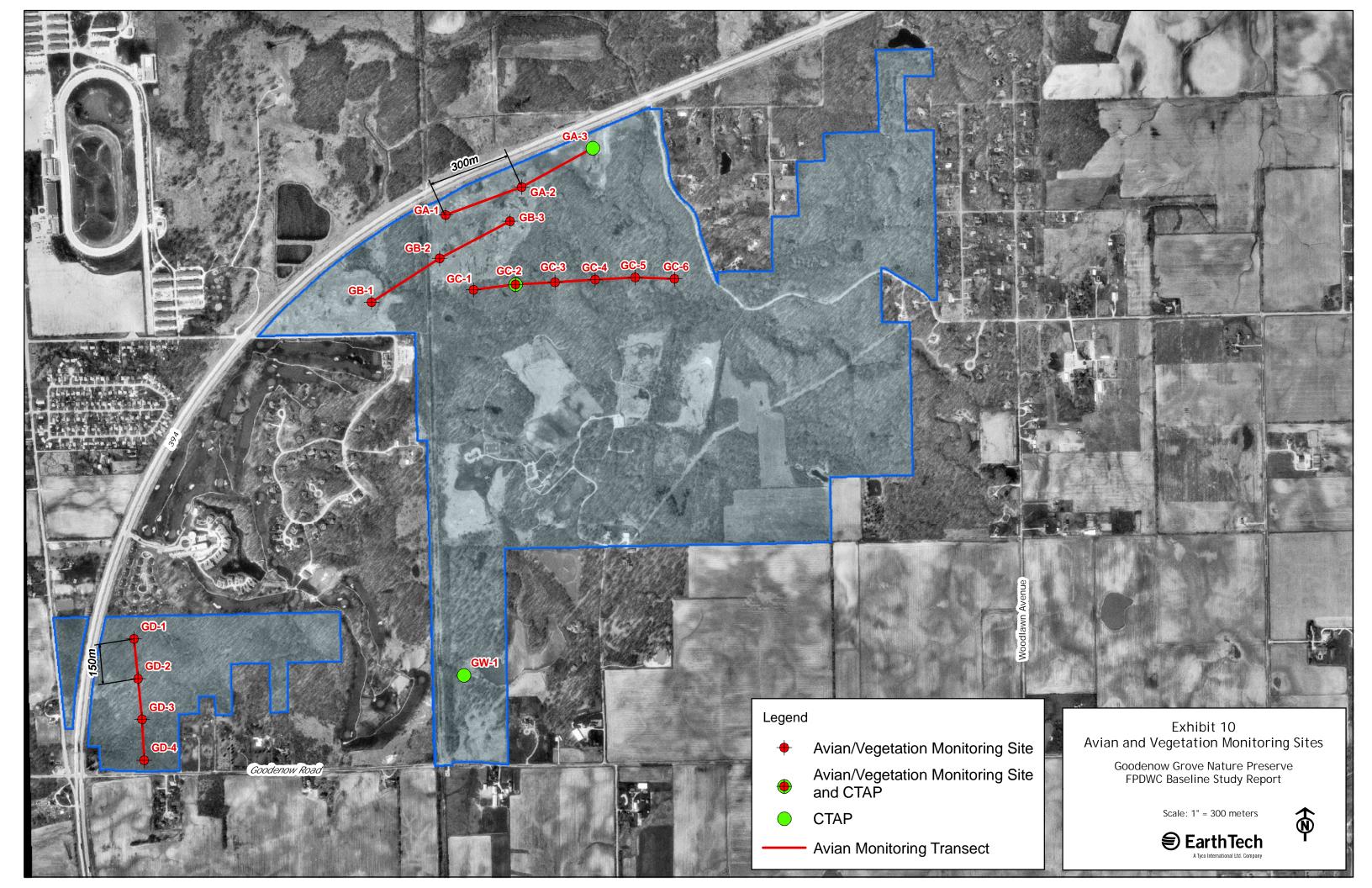
					СТАР	Transect R	Table esults for H		Strata: All	Plots					
Location	Plot	Habitat	Transect	%Native Species	Transect Native Species	Quad Avg Native Species	Transect Total Species	Quad Avg Total Species	Transect Native FQI	Quad Avg Native FQI	Transect FQI w/ advent	Quad Avg FQI w/ advent.	Transect Native Mean C	Quad Avg Native Mean C	
Monee Reservoir	MG-1	Grassland	1(n=20)	68	17	4.8	25	6.6	16.5	7.5	13.6	6.4	4.0	3.5	Ī
Goodenow Grove	GC-2	Forest	1(n=10)	100	31	6.4	31	6.4	19.9	8.1	19.9	8.1	3.6	3.2	Ī
			2(n=10)	100	19	3.0	19	3.0	15.1	4.7	15.1	4.7	3.5	2.4	T
			3(n=10)	100	28	7.9	28	7.9	19.1	8.9	19.1	8.9	3.6	3.2	Ī
	GA-3	Grassland	1(n=20)	88	22	4.6	25	4.8	16.4	7.9	15.4	7.7	3.5	3.8	
	GW-1	Wetland	1(n=20)	90	36	7.8	40	8.8	21.2	8.8	20.1	8.4	3.5	3.2	Ī
Raccoon Grove	RG-1	Grassland	1(n=20)	82.4	28	6.8	34	8.0	17.8	9.0	16.1	8.3	3.4	3.6	
	RA-4	Forest	1(n=10)	100	31	5.4	31	5.4	21.9	7.3	21.9	7.3	3.9	3.1	T
			2(n=10)	95.7	22	5.1	23	5.2	15.8	6.1	15.4	6.1	3.4	2.7	T
			3(n=10)	94.7	18	3.3	19	3.4	14.4	5.0	14.0	4.9	3.4	2.9	Τ

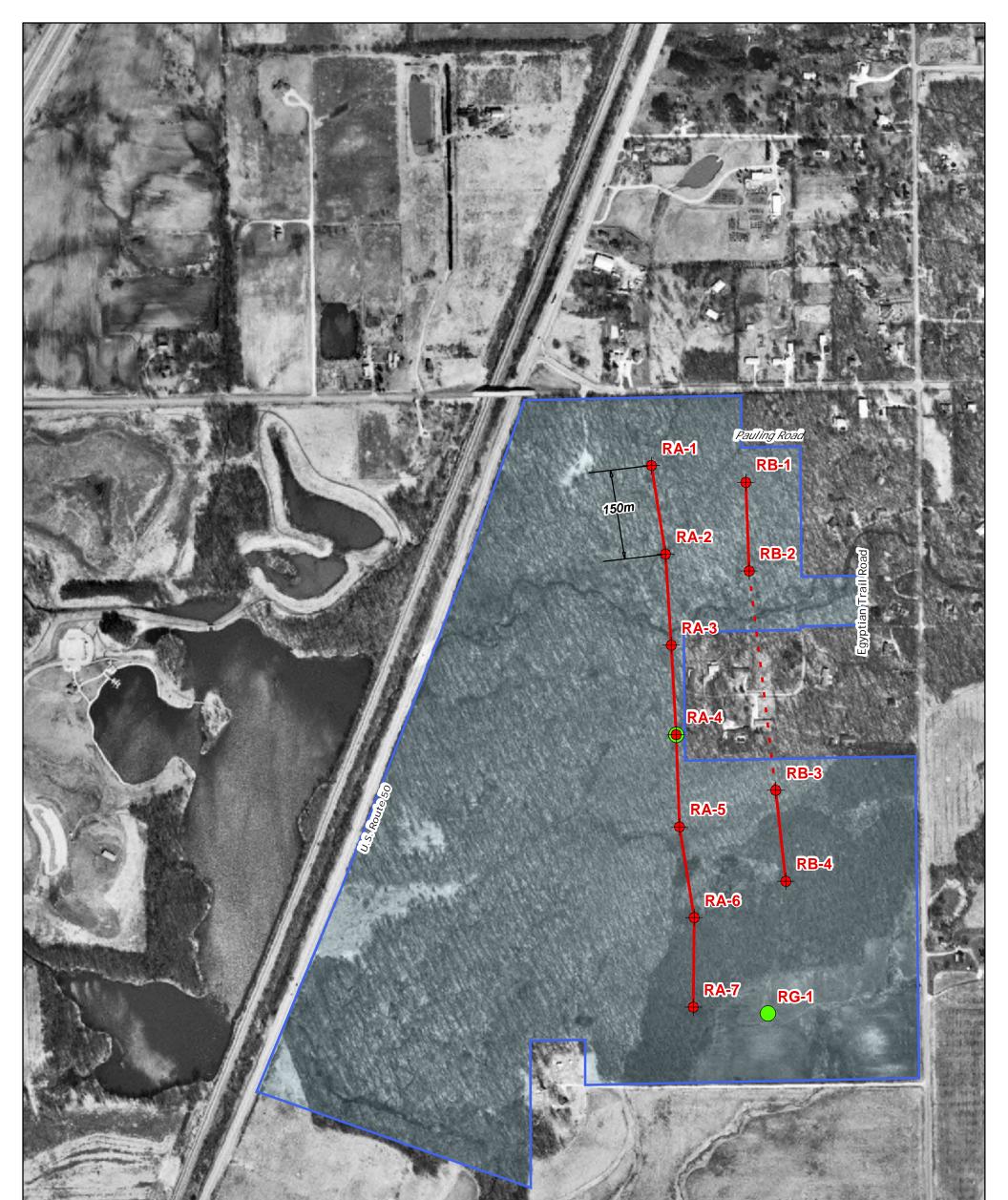
Transect Mean C w/ advent.	Quad Avg Mean C w/ advent.
2.7	2.5
3.6	3.2
3.5	2.4
3.6	3.2
3.1	3.6
3.2	2.9
2.8	3.1
3.9	3.1
3.2	2.7
3.2	2.8

				СТА	P Transect I	Results for	Table Shrub/Tree		assland and	d Wetland	Plots					
Location	Plot	Habitat	Transect	%Native Species	Transect Native Species	Quad Avg Native Species	Transect Total Species	Quad Avg Total Species	Transect Native FQI	Quad Avg Native FQI	Transect FQI w/ advent	Quad Avg FQI w/ advent.	Transect Native Mean C	Quad Avg Native Mean C	Transect Mean C w/ advent.	Quad Avg Mean C w/ advent.
Monee Reservoir	MG-1	Grassland	1(n=20)		0		0									
Goodenow Grove	GA-3	Grassland	1(n=20)		0		0									
	GW-1	Wetland	1(n=20)	75	3	2.8	4	3.0	2.3	2.1	2.0	2.0	1.3	1.3	1.0	1.2
Raccoon Grove	RG-1	Grassland	1(n=20)	100	1	1.0	1	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0

					СТАР	Transect A	Table I verages fo		a: Forest P	Plots						
Location	Plot	Habitat	Transect	%Native Species	Transect Native Species	Quad Avg Native Species	Transect Total Species	Quad Avg Total Species	Transect Native FQI	Quad Avg Native FQI	Transect FQI w/ advent	Quad Avg FQI w/ advent.	Transect Native Mean C	Quad Avg Native Mean C	Transect Mean C w/ advent.	Quad Avg Mean C w/ advent.
Goodenow Grove	GC-2	Forest	1(n=10)	100	10	3.8	10	3.8	14.5	8.4	14.5	8.4	4.6	4.4	4.6	4.4
			2(n=10)	100	11	3.8	11	3.8	11.2	5.7	11.2	5.7	3.4	3.1	3.4	3.1
			3(n=10)	87.5	7	3.0	8	3.2	11.0	7.7	10.3	7.6	4.1	4.6	3.6	4.4
Raccoon Grove	RA-4	Forest	1(n=10)	100	10	3.8	10	3.8	13.9	7.5	13.9	7.5	4.4	3.8	4.4	3.8
			2(n=10)	100	10	5.2	10	5.2	12.3	7.6	12.3	7.6	3.9	3.4	3.9	3.4
			3(n=10)	100	10	4.8	10	4.8	12.6	10.0	12.6	10.0	4.0	4.6	4.0	4.6

					(CTAP Trans		able D-2.5 for Shrub	Strata: Fore	est Plots						
Location	Plot	Habitat	Transect	Percent Native Species	Transect Native Species	Quad Avg Native Species	Transect Total Species	Quad Avg Total Species	Transect Native FQI	Quad Avg Native FQI	Transect FQI w/ advent	Quad Avg FQI w/ advent.	Transect Native Mean C	Quad Avg Native Mean C	Transect Mean C w/ advent.	Quad Avg Mean C w/ advent.
Goodenow Grove	GC-2	Forest	1(n=10)	100	1	0.2	1	0.2	5.0	1.0	5.0	1.0	5.0	1.0	5.0	1.0
			2(n=10)	100	2	0.4	2	0.4	6.4	1.3	6.4	1.3	4.5	0.9	4.5	0.9
			3(n=10)	100	2	0.6	2	0.6	7.1	3.4	7.1	3.4	5.0	3.4	5.0	3.4
Raccoon Grove	RA-4	Forest	1(n=10)	85.7	6	1.6	7	2.0	4.9	2.4	4.5	2.1	2.0	1.9	1.7	1.5
			2(n=10)	85.7	6	2	7	2.2	6.5	4.4	6.0	4.1	2.7	3.5	2.3	3.0
			3(n=10)	85.7	6	2	7	2.4	7.8	4.9	7.2	4.5	3.2	3.6	2.7	2.9


									Manuel	otion De	Table D-3		bitot									
				Mod	an C ¹	1		QI ²	-		sults by Prese		bitat Dominant Pe	reamt Cav				la tra du	and Energies	o, # or d 0		
Preserve	Habitat	Plot	Tree	Shrub	Herbaceous	Tree	Shrub	Herbaceous	# Spe Native	1	Tre		Dominant Pe Shru		er Herbaceo	ue	Herbac		iced Species Shru		o cover Tre	
					Tielbaceous	1166		Therbaceous	Native	Total	(Mean Basal Area) Species ³	Avg.% cover	Species ³	Avg% cover	Species ³	Avg.% cover	Species ³	Avg.% cover	Species ³	Avg.% cover	Species ³	
GG	Forest	GC1	6.3	2.7	3.0	11.0	4.6	6.0	10.0	10.0	QUERUB	589.2	CRAMOL RUBALL	2.5 2.5	SANGRE	72.50		0.00		0		0
	Forest	GC2*	4.0	1.8	2.9	7.3	1.9	7.7	10.0	10.0	QUEALB	1437.32	QUERUB	2.0	SANGRE BARE	19.87 16.87		0.00				
	Forest	GC3	6.0	5.5	4.5	8.5	13.5	11.0	14.0	14.0	QUERUB	2140.08	STATRI OSTVIR	5.1 5.1	SANGRE THADIO	25 25		0.00		0		0
	Forest	GC4	3.3	3.7	3.3	6.5	6.4	9.2	15.0	15.0	QUEMAC	1963.5	STATRI	3.8	ASACAN LAPCAN SANGRE	18.75 18.75 18.75		0.00		0		0
	Forest	GC5	6.0	4.3	4.0	8.5	7.5	6.9	8.0	8.0	OSTVIR	112.87	OSTVIR	3.8	SANGRE	37.50		0.00		0		0
	Forest	GC6	5.7	4.0	2.6	9.8	11.3	5.8	16.0	16.0	QUERUB	23.76	VIBPRU	59.9	SANGRE	18.75		0.00		0		0
	Forest	GD1	2.7	2.7	3.0	4.6	7.2	4.2	12.0	16.0	PRUSER	56.65	VIRDEN PRUSER	42 19.1	RIBMIS	12.50	VIBDEN ALLPET	6.25 6.25	VIRDEN ROSMUL	33 9		0
	Forest	GD2	4.0	2.9	3.5	6.9	8.1	8.6	17.0	21.0	QUERUB	2779.23	VIRDEN CRAMOL RUBALL	21.6 21.6 17.8	RIBMIS LONTAT	18.75 18.75	LONTAT	18.75	VIRDEN LONTAT ROSMUL	17 1 2		
	Forest	GD3	3.3	2.9	1.6	5.8	7.6	3.6	15.0	15.0	QUEMAC	3237.12	RIBMIS	21.6	GEUCAN	12.50				0		0
	Forest	GD4	3.8	3.0	2.3	7.5	6.7	4.0	12.0	15.0	QUEALB	1294.02	RIBMIS	21.6	LONMAA	23.75	LONMAA SYMORB	23.75 6.25	ROSMUL	1		0
Average- Preserve			4.5	3.4	3.1	7.6	7.5	6.7	12.9	14.0												
RG	Forest	RA1	4.3	1.0	2.8	7.5	1.0	5.5	8.0	8.0	QUEMAC	1213.04	PRUSER	2.5	GERMAC SANGRE	18.75 18.75		0.00		0		0
	Forest	RA2	4.0	3.0	7.0	5.7	3.0	9.9	5.0	5.0	ACESAC	520.34	ACESAC	22.9	ASACAN BARE	25 37.5		0.00		0		0
	Forest	RA3	2.7	2.0	4.3	4.6	2.0	8.5	8.0	9.0	OSTVIR	924.01	CRAMOL	1.3	PODPEL ASACON	50 55	ALLPET	6.25		0		0
	Forest	RA4*	3.9	3.0	2.9	8.4	3.9	6.1	12.0	12.0	QUERUB	780.1	ROSMUL CAROVT	5.5 3.0	SOIL PARQUI SANGRE	34.23 9.93 7.53						
	Forest	RA5	4.0	3.5	3.4	6.9	4.9	7.6	10.0	13.0	VIBPRU	373.25	OSTVIR CRAMOL ROSMUL	1.3 1.3 1.3	LITTER/BARE ALLCER RHURAD BIDFRO POTSIS	61.25 12.5 12.4 12.5 12.5		0.00	ROSMUL	1		0
	Forest	RA6	4.0	3.5	2.8	5.7	4.9	6.9	10.0	10.0	QUEBIC	445.99	CAROVT CRAMOL	1.3 1.3	CAREXSP BOECYC	25.0 12.5		0.00		0		0
	Forest	RA7	1.5	1.7	2.5	2.1	2.9	6.1	11.0	13.0	FRAPES	126.3	FRAPES	2.5	CRYCAN SANGRE	43.75 31.25		0.00	ROSMUL RHACAT	1		0
	Forest	RB1	4.0	3.0	3.0	5.7	3.0	4.2	5.0	5.0	TILAME	1717.87	ACESAC	3.8	BARE ARITRI SANGRE	75.0 6.25 6.25		0.00		0		0
	Forest	RB2	4.0	3.5	3.5	6.9	4.9	9.9	13.0	13.0	TILAME	133.2	CRAMOL CAROVT	1.3 1.3	LAPCAN ASACAN	37.5 31.25		0.00		0		0
	Forest	RB3	5.0	2.0	4.3	7.1	2.0	10.6	9.0	9.0	CAROVT	69.63	CRAMOL	2.5	ARITRI	25.00		0.00		0		0
	Forest	RB4	2.7	2.0	2.9	4.6	2.0	8.1	12.0	12.0	FRAPES	1170.21	CRAMOL	1.3	CRYCAN	37.50		0.00		0		0
Average- Preserve			3.6	2.6	3.6	5.9	3.1	7.6	9.4	9.9												
Average-			4.1	3.0	3.3	6.8	5.3	7.1	11.1	12.0												


											Table D-3											
	1								Veget	ation Re	sults by Prese	erve and Ha	bitat	1			I	1	T		1	T
GG	Grassland	GA1	3.0	1.0	1.5	5.2	1.0	3.0	8.0	9.0	POPDEL	390.57	SALINT	82.8	HELGRO ELEERY	37.5 25	AGRALA	12.50		0		0
	Grassland	GA3*	0.0	0.0	3.8	0.0	0.0	7.9	5.0	5.0	N/A	0		0	ANDGER BARE SOLALT ERISTR	51 26 8.1 5.2						
	Grassland	GB1	3.0	3.0	3.0	4.2	6.0	9.9	17.0	22.0	POPDEL	730.48	RUBALL CORRAC	16.6 12.7	POAPRA AGRALA RUBALL	37.5 31.25 31.25	POAPRA AGRALB CHRLEP	37.5 31.25 6.25	ROSMUL ELEUMB	1 5		
	Grassland	GB2	2.0	1.5	2.6	2.0	2.1	6.8	10.0	13.0	FRAPES	33.23	ELEUMB	5.1	CXGRAN	31.25	AGRALB CHRLEP	12.5 6.25	ELEUMB	4		
Average- Preserve			2.0	1.4	2.7	2.9	2.3	6.9	10.0	12.3												
RG	Grassland	RG1*	0.0	1.0	3.6	0.0	1.0	9.0	8.0	9.0		0	CORRAC	26.0	ANDGER POAPRA SOLJUN ASTERI	40.25 17.05 11.85 9.65						
Average- Preserve			0.0	1.0	3.6	0.0	1.0	9.0	8.0	9.0												
MR	Grassland	MA1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	POPDEL	47.58		0	POAPRA	67.50	POAPRA TRIREP AGRALB PHAARU	67.5 25 12.5 12.5		0		0
	Grassland	MB2	1.0	0.0	0.0	1.0	0.0	0.0	1.0	3.0	POPDEL	52.65		0	PHAARU	43.75	PHAARU CHRLEP	43.75 6.25		0		0
	Grassland	MG1*	0.0	0.0	3.5	0.0	0.0	7.5	5.0	7.0		0		0	ANDGER SOLALT MELALB	41.88 18.1 14.1						
Average- Preserve			0.3	0.0	1.2	0.3	0.0	2.5	2.0	4.7												
Average- Grassland			0.8	0.8	2.5	1.1	1.1	6.1	6.7	8.6												
GG	Wetland	GA2	3.0	0.0	2.5	4.6	0.0	3.5	5.0	6.0	POPDEL	902.78		0	AGRALA SOLALT	25 25	AGRALB	25.00		0		0
	Wetland	GB3	2.5	0.0	4.0	3.5	0.0	5.7	4.0	4.0	FRAPES	273.28		0	CXSTRI LITTER	62.5 50		0.00		0		0
	Wetland	GW1*	2.0	1.3	3.2	2.0	2.1	8.8	12.0	13.0	CRAMOL	43.59	CORRAC SALINT	47 27.4	AGRALA CXSART SOLALT	34.3 17.5 14.6						
Average- Preserve			2.5	0.4	3.2	3.4	0.7	6.0	7.0	7.7												
RG	Wetland	RW1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A						
Average- Preserve			N/A	N/A	N/A	N/A	N/A	N/A			N/A	N/A	N/A	N/A	N/A	N/A						
MR	Wetland	MA2	0.0	3.5	0.0	0.0	4.9	0.0	2.0	3.0	ACENEG	1320.35	RIBAME ACENEG	1 1	PHAARU	100.00	PHAARU	100.00		0		0
	Wetland	MB1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A						
	Wetland	MB3	2.0	0.0	5.0	2.0	0.0	5.0	2.0	3.0	N/A	N/A	N/A	N/A	BARE ANDGER	55 55	MELALB	18.75		0.0		0.0
Average- Preserve			0.7	1.2	1.7	0.7	1.6	1.7	1.3	2.0												
Average- Wetland			1.1	0.5	1.6	1.3	0.8	2.6	2.8	3.2												

Notes:

¹Mean Coefficient of Conservatism ²Floristic Quality Index value ³Appendix E – Floristic Quality Assessment Reports **Bold*** = CTAP Plot

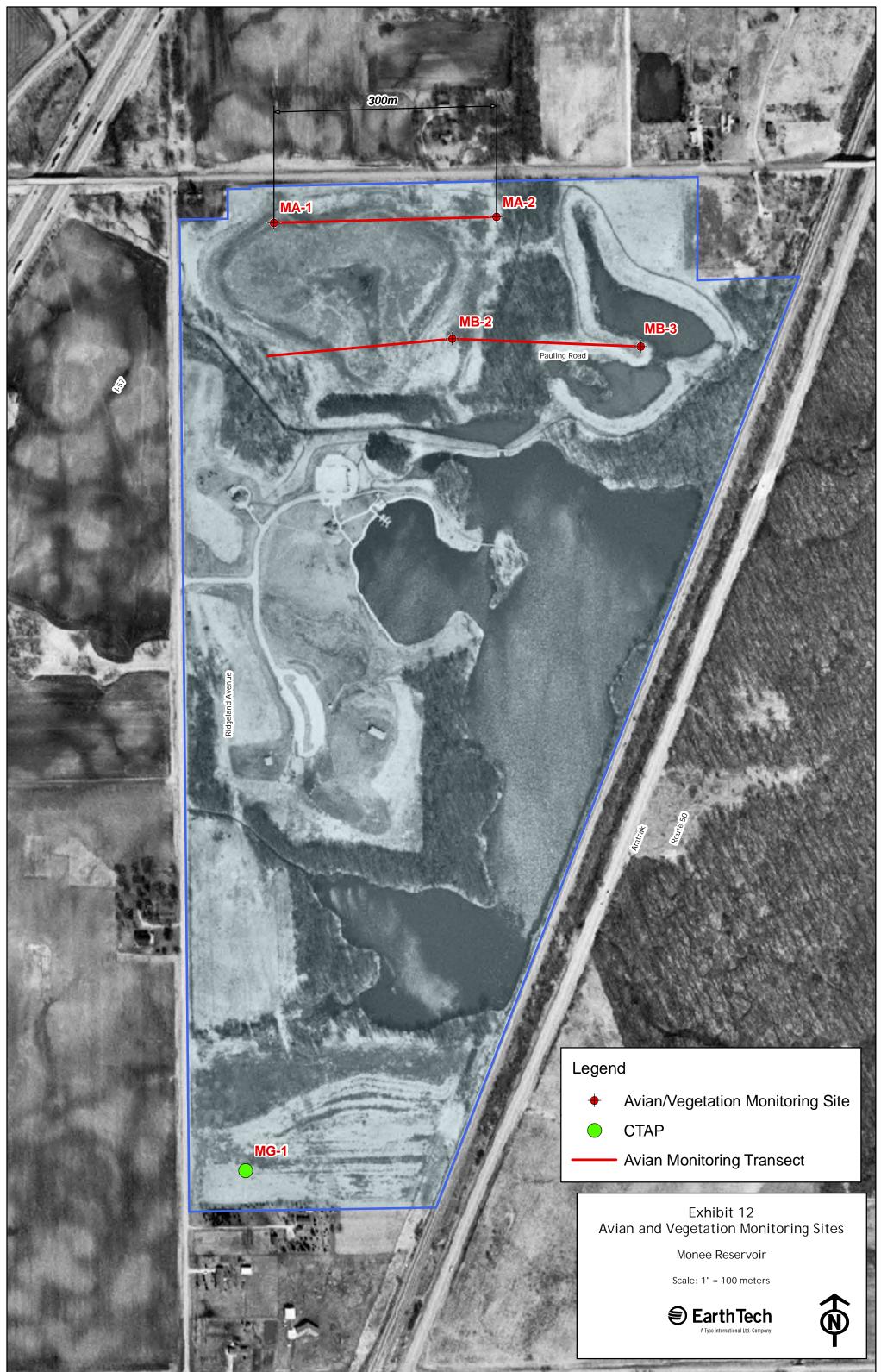
Appendix C: Avian Monitoring Results

Legend

- Avian/Vegetation Monitoring Site
- Avian/Vegetation Monitoring Site and CTAP

СТАР

- Avian Monitoring Transect
- - · Transect Not Walked Private Property


Exhibit 11 Avian and Vegetation Monitoring Sites

Raccoon Grove Nature Preserve

Scale: 1" = 150 meters

	Table C-1 Avian Monitoring Master Species List							
Abbreviation	Common Name	Scientific Name						
ACFL	Acadian Flycatcher	Empidonax virecens						
ALFL	Alder Flycatcher	Empidonax alnorum						
AMCR	American Crow	Corvus brachyrhynchos						
AMGO	American Goldfinch	Carduelis tristis						
AMRE	American Redstart	Setophaga ruticilla						
AMRO	American Robin	Turdus migratorius						
AMWO	American Woodcock	Scolopax minor						
ATSP	American Tree Sparrow	Spizella arborea						
BASW	Barn Swallow	Hirundo rustica						
BBWA	Bay-breasted Warbler	Dendroica castanea						
вссн	Black-capped Chickadee	Peocile atricapillus						
BEKI	Belted Kingfisher	Ceryle alcyon						
BGGN	Blue-gray Gnatcatcher	Polioptila caerulea						
внсо	Brown-headed Cowbird	Molothrus ater						
BLJA	Blue Jay	Cyanocitta cristata						
BRCR	Brown Creeper	Certhia americana						
BRTH	Brown Thrasher	Toxostoma rufum						
BTBW	Black-throated Blue Warbler	Dendroica caerulescens						
BTGW	Black-throated Green Warbler	Dendroica virens						
BWTE	Blue-winged Teal	Anas discors						
BWWA	Blue-winged Warbler	Vermivora pinus						
CAGO	Canadian Goose	Branta canadensis						
CAWR	Carolina Wren	Thryothorus ludovicianus						
CEWX	Cedar Waxwing	Bombycilla cedrorum						
CHSP	Chipping Sparrow	Spizella passerina						
CHSW	Chimney Swift	Chaetura pelagica						
COGR	Common Grackle	Quiscalus quiscula						
СОНА	Cooper's Hawk	Accipiter cooperii						
COSN	Common Snipe	Gallinago gallinago						
COWA	Connecticut Warbler	Oporornis agilis						
COYE	Common Yellowthroat	Geothlypis trichas						
CSWA	Chestnut-sided Warbler	Dendroica pensylvanica						
DEJU	Dark-eyed Junco	Junco hyemalis						
DICK	Dickcissel	Spiza americana						
DOWO	Downy Woodpecker	Picoides pubescens						
EABL	Eastern Bluebird	Sialia sialis						
EAKI	Eastern Kingbird	Tyrannus tyrannus						
EAME	Eastern Meadowlark	Sturnella magna						
EAPH	Eastern Phoebe	Sayornis phoebe						
EUST	European Starling	Sturnus vulgaris						
EWPE	Eastern Wood-Pewee	Contopus virens						
FISP	Field Sparrow	Spizella pusilla						

	Table C-1							
	Avian Monitoring Master S	Species List						
Abbreviation	Common Name	Scientific Name						
GBHE	Great Blue Heron	Ardea herodias						
GCFL	Great Crested Flycatcher	Myiarchus crinitus						
GCKI	Golden-crowned Kinglet	Regulus satrapa						
GRCA	Gray Catbird	Dumetella carolinensis						
GREG	Great Egret	Ardea alba						
GRSP	Grasshopper Sparrow	Ammodramus savannarum						
HAWO	Hairy Woodpecker	Picoides villosus						
HOFI	House Finch	Carpodacus mexicanus						
HOWR	House Wren	Troglodytes aedon						
INBU	Indigo Bunting	Passerina cyanea						
KILL	Killdeer	Charadrius vociferus						
LEFL	Least Flycatcher	Empidonax minimus						
LISP	Lincoln's Sparrow	Melospiza lincolnii						
MALL	Mallard	Anas platyrhynchos						
MAWA	Magnolia Warbler	Dendroica magnolia						
MODO	Mourning Dove	Zenaida macroura						
NAWA	Nashville Warbler	Vermivora ruficapilla						
NOBO	Northern Bobwhite	Colinus virginianus						
NOCA	Northern Cardinal	Cardinalis cardinalis						
NOFL	Northern Flicker	Colaptes auratus						
NOHA*	Northern Harrier*	Circus cyaneus*						
NOOR	Baltimore Oriole	lcterus galbula						
NOPA	Northern Parula	Parula americana						
OROR	Orchard Oriole	Icterus spurius						
OVEN	Ovenbird	Seiurus aurocapillus						
PAWA	Palm Warbler	Dendroica palmarum						
PBGR	Pied-billed Grebe	Podilymbus podiceps						
PHVI	Philadelphia Vireo	Vireo philadelphicus						
PIWO	Pileated Woodpecker	Dryocopus pileatus						
RBGR	Rose-breasted Grosbeak	Pheucticus ludovicianus						
RBGU	Ring-billed Gull	Larus delawarensis						
RBWO	Red-bellied Woodpecker	Melanerpes carolinus						
RCKI	Ruby-crowned Kinglet	Regulus calendula						
REVI	Red-eyed Vireo	Vireo olivaceus						
RHWO	Red-headed Woodpecker	Melanerpes erythrocephalus						
RNPH	Ring-necked Pheasant	Phasianus colchicus						
RODO	Rock Dove	Columba livia						
RSTO	Eastern Towhee	Pipilo erythropthalmus						
RTHA	Red-tailed Hawk	Buteo jamaicensis						
RWBL	Red-winged Blackbird	Agelaius phoeniceus						
SCTA	Scarlet Tanager	Piranga olivacea						
SEWR	Sedge Wren	Cistothorus platensis						

Table C-1						
Abbreviation	Avian Monitoring Master Spe Common Name	Scientific Name				
SORA	Sora	Porzana carolina				
SOSA						
-	Solitary Sandpiper	Tringa solitaria				
SOSP SSHA	Song Sparrow	Melospiza melodia				
	Sharp-shinned Hawk	Falco				
SWSP	Swamp Sparrow	Melospiza georgiana				
SWTH	Swainson's Thrush	Catharus ustulatus				
TEWA	Tennessee Warbler	Vermivora peregrina				
TRSW	Tree Swallow	Tachycineta bicolor				
Τυτι	Tufted Titmouse	Baeolophus bicolor				
Τυνυ	Turkey Vulture	Cathartes aura				
UNBL	Unknown Blackbird					
UNEMP	Unknown Empidinax Flycatcher					
UNOW	Unknown Owl					
UNPAS	Unknown Passerine					
VESP	Vesper Sparrow	Pooecetes gramineus				
WAVI	Warbling Vireo	Vireo gilvus				
WBNU	White-breasted Nuthatch	Sitta carolinensis				
WCSP	White-crowned Sparrow	Zonotrichia leucophrys				
WIFL	Willow Flycatcher	Empidonax traillii				
WITU	Wild Turkey	Meleagris gallopavo				
WIWR	Winter Wren	Troglodytes troglodytes				
WODU	Wood Duck	Aix sponsa				
WOTH	Wood Thrush	Hylocichla mustelina				
YBCU	Yellow-billed Cuckoo	Coccyzus americanus				
YBSA	Yellow-bellied Sapsucker	Sphyrapicus varius				
YEWA	Yellow Warbler	Dendroica petechia				
YRWA	Yellow-rumped Warbler	Dendroica coronata				

Source: Earth Tech Ecologists 2004. *Illinois Endangered Species, Illinois Endangered Species Protection Board, 2004.

	Table C-2 Species Observed During Point Count Surveys								
Order	Common Name	Scientific Name	Abbreviation	Area Sensitive	Habitat Dependent	Neotropical Migrant			
ANSERIFORMES	Blue-winged Teal	Anas discors	BWTE		W	Y			
	Canadian Goose	Branta canadensis	CAGO		W				
	Mallard	Anas platyrhynchos	MALL		W				
	Wood Duck	Aix sponsa	WODU		W				
APODIFORMES	Chimney Swift	Chaetura pelagica	CHSW			Y			
CHARADRIIFORMES	Killdeer	Charadrius vociferus	KILL						
	Ring-billed Gull	Larus delawarensis	RBGU		W				
CICONIIFORMES	Great Blue Heron	Ardea herodias	GBHE		W				
	Great Egret	Ardea alba	GREG		W				
	Turkey Vulture	Cathartes aura	TUVU						
COLUMBIFORMES	Mourning Dove	Zenaida macroura	MODO						
	Rock Dove	Columba livia	RODO						
CORACIIFORMES	Belted Kingfisher	Ceryle alcyon	BEKI		W				
CUCULIFORMES	Yellow-billed Cuckoo	Coccyzus americanus	YBCU	М	F	Y			
FALCONIFORMES	Cooper's Hawk	Accipiter cooperii	COHA	L	F				
	Red-tailed Hawk	Buteo jamaicensis	RTHA						
GALLIFORMES	Northern Bobwhite	Colinus virginianus	NOBO						
	Ring-necked Pheasant	Phasianus colchicus	RNPH	L	G				
GRUIFORMES	American Coot	Fulica americana	AMCO		W				
	Sora	Porzana carolina	SORA		W				
PASSERIFORMES	Alder Flycatcher	Empidonax alnorum	ALFL			Y			
	American Goldfinch	Carduelis tristis	AMGO						
	American Redstart	Setophaga ruticilla	AMRE	Н	F				
	American Robin	Turdus migratorius	AMRO	L	F				
	American Tree Sparrow	Spizella arborea	ATSP						
	Baltimore Oriole	Icterus galbula	NOOR			Y			
	Barn Swallow	Hirundo rustica	BASW			Y			
	Bay-breasted Warbler	Dendroica castanea	BBWA			Y			
	Black-capped Chickadee	Peocile atricapillus	BCCH	L	F				

	Table C-2 Species Observed During Point Count Surveys								
Order	Common Name	Scientific Name	Abbreviation	Area Sensitive	Habitat Dependent	Neotropical Migrant			
	Black-throated Blue Warbler	Dendroica caerulescens	BTBW			Y			
	Blue Jay	Cyanocitta cristata	BLJA	L	F				
	Blue-gray Gnatcatcher	Polioptila caerulea	BGGN	М	F	Y			
	Blue-winged Warbler	Vermivora pinus	BWWA			Y			
	Brown Creeper	Certhia americana	BRCR						
	Brown Thrasher	Toxostoma rufum	BRTH						
	Brown-headed Cowbird	Molothrus ater	BHCO						
	Carolina Chickadee	Poecile carolinensis	CACH	L	F				
	Carolina Wren	Thryothorus ludovicianus	CAWR						
	Cedar Waxwing	Bombycilla cedrorum	CEWX						
	Chestnut-sided Warbler	Dendroica pensylvanica	CSWA			Y			
	Common Grackle	Quiscalus quiscula	COGR						
	Common Yellowthroat	Geothlypis trichas	COYE			Y			
	Connecticut Warbler	Oporornis agilis	COWA			Y			
	Dark-eyed Junco	Junco hyemalis	DEJU						
	Dickcissel	Spiza americana	DICK	L	G	Y			
	Eastern Kingbird	Tyrannus tyrannus	EAKI			Y			
	Eastern Meadowlark	Sturnella magna	EAME	М	G				
	Eastern Phoebe	Sayornis phoebe	EAPH						
	Eastern Wood-Pewee	Contopus virens	EWPE			Y			
	European Starling	Sturnus vulgaris	EUST						
	Field Sparrow	Spizella pusilla	FISP	L	G				
	Golden-crowned Kinglet	Regulus satrapa	GCKI	М	F				
	Grasshopper Sparrow	Ammodramus savannarum	GRSP	М	G	Y			
	Gray Catbird	Dumetella carolinensis	GRCA			Y			
	Great Crested Flycatcher	Myiarchus crinitus	GCFL	L	F	Y			
	House Wren	Troglodytes aedon	HOWR	L	F				
	Indigo Bunting	Passerina cyanea	INBU			Y			
	Least Flycatcher	Empidonax minimus	LEFL	Н	F	Y			

	Table C-2 Species Observed During Point Count Surveys								
Order	Common Name	Scientific Name	Abbreviation	Area Sensitive	Habitat Dependent	Neotropical Migrant			
	Magnolia Warbler	Dendroica magnolia	MAWA			Y			
	Nashville Warbler	Vermivora ruficapilla	NAWA			Y			
	Northern Cardinal	Cardinalis cardinalis	NOCA						
	Red-eyed Vireo	Vireo olivaceus	REVI	М	F	Y			
	Red-winged Blackbird	Agelaius phoeniceus	RWBL						
	Rose-breasted Grosbeak	Pheucticus Iudovicianus	RBGR	L	F	Y			
	Scarlet Tanager	Piranga olivacea	SCTA	М	F	Y			
	Sedge Wren	Cistothorus platensis	SEWR	М	G				
	Song Sparrow	Melospiza melodia	SOSP	L	G				
	Swainson's Thrush	Catharus ustulatus	SWTH			Y			
	Swamp Sparrow	Melospiza georgiana	SWSP		W				
	Tennessee Warbler	Vermivora peregrina	TEWA			Y			
	Tree Swallow	Tachycineta bicolor	TRSW			Y			
	Tufted Titmouse	Baeolophus bicolor	TUTI						
	Vesper Sparrow	Pooecetes gramineus	VESP	L	G				
	Warbling Vireo	Vireo gilvus	WAVI	L	F	Y			
	White-breasted Nuthatch	Sitta carolinensis	WBNU	М	F				
	Willow Flycatcher	Empidonax traillii	WIFL		W	Y			
	Winter Wren	Troglodytes troglodytes	WIWR						
	Wood Thrush	Hylocichla mustelina	WOTH	М	F	Y			
	Yellow Warbler	Dendroica petechia	YEWA			Y			
PICIFORMES	Downy Woodpecker	Picoides pubescens	DOWO	L	F				
	Hairy Woodpecker	Picoides villosus	HAWO	М	F				
	Northern Flicker	Colaptes auratus	NOFL						
	Pileated Woodpecker	Dryocopus pileatus	PIWO	Н	F				
	Red-bellied Woodpecker	Melanerpes carolinus	RBWO	L	F				
	Red-headed Woodpecker	Melanerpes erythrocephalus	RHWO	L	F				
	Yellow-bellied Sapsucker	Sphyrapicus varius	YBSA	М	F				

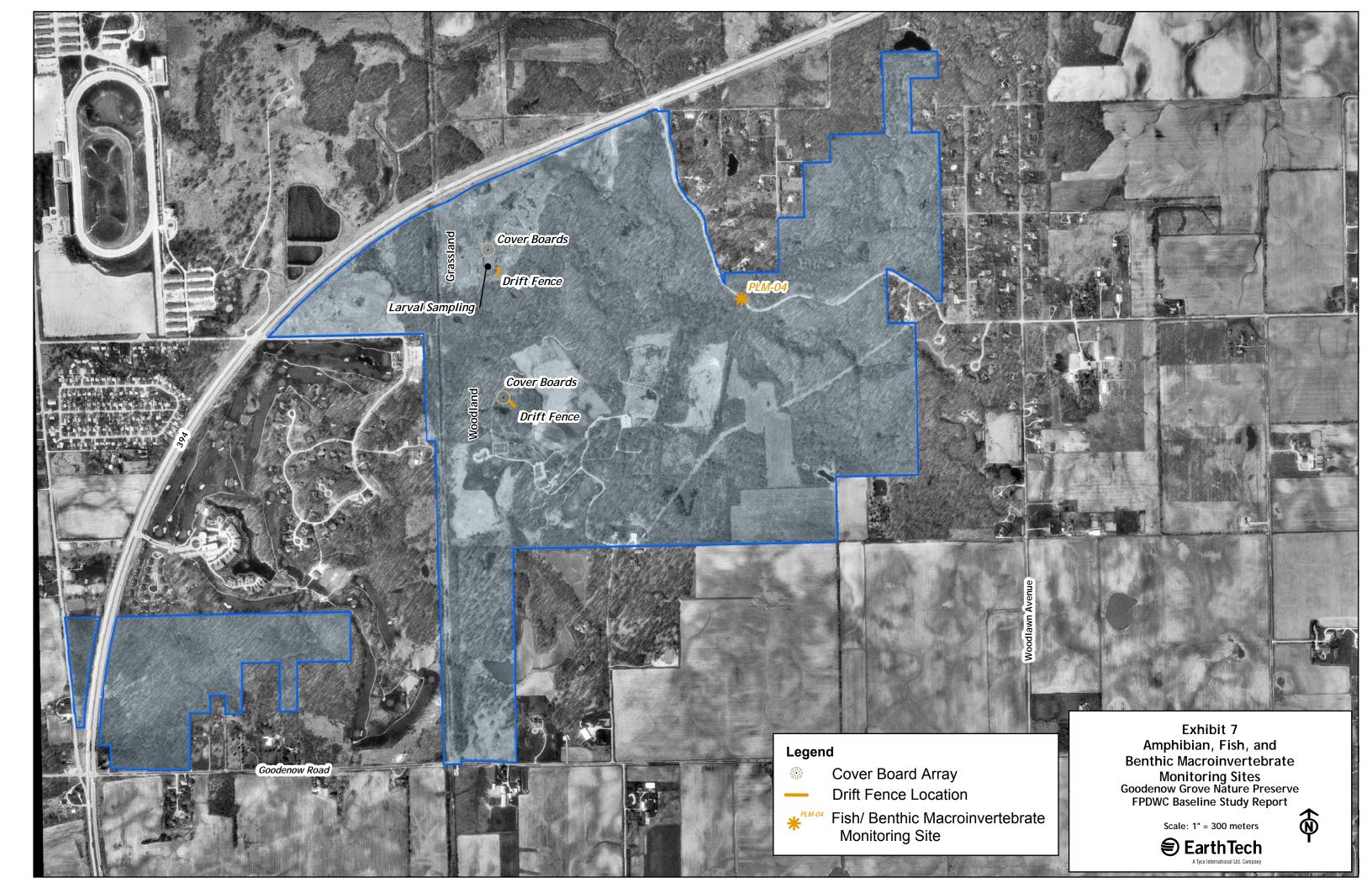

Notes: For Area Sensitive Species: H=High, M=Moderate, L=Low For Habitat Dependent Species: F=Forest, G=Grassland, W=Wetland

	Table C-3 Total Species Summary										
Category	Habitat/Location	Total	Area Sensitive				Habit	at Dependen	t	Neotropical	
Outegory		Species	Total	High	Moderate	Low	Total	Forest	Grassland	Wetland	Migrants
Habitat	Forest	59	24	2	9	13	29	23	1	5	20
	Grassland	44	17	1	5	11	25	10	7	8	14
	Wetland	61	17	1	4	12	27	10	4	13	19
Habitat	Goodenow-Forest	44	19	0	8	11	22	18	1	3	17
by Preserve	Goodenow- Grassland	26	10	0	4	6	13	5	5	3	10
	Goodenow-Wetland	30	10	0	3	7	14	7	3	4	10
	Raccoon-Forest	41	19	2	7	10	23	19	0	4	10
	Raccoon-Grassland	15	7	1	1	5	8	2	5	1	5
	Raccoon-Wetland	23	8	0	3	5	12	8	0	4	5
	Monee-Grassland	24	7	0	0	7	12	4	3	5	5
	Monee-Wetland	42	10	1	0	9	18	8	2	8	14
Preserve	Goodenow	60	24	0	11	13	30	19	5	6	22
	Raccoon	55	24	3	8	13	30	22	2	6	15
	Monee	48	14	1	1	12	23	8	6	9	15
	TOTAL	86	33	3	12	18	45	25	8	12	33

Table C-4 Density per Plot and Preserve								
Preserve	Plot	# Individuals	Density/m2	# Species	Density/m2			
GG	GA1	27	0.0034	12	0.0015			
	GA2	41	0.0052	16	0.0020			
GA3		26	0.0033	9	0.0011			
	GB1	33	0.0042	16	0.0020			
	GB2	30	0.0038	16	0.0020			
	GB3	31	0.0039	12	0.0015			
	GW1	56	0.0071	20	0.0025			
	GC1	19	0.0024	11	0.0014			
	GC2	20	0.0025	12	0.0015			
	GC3	19	0.0024	11	0.0014			
	GC4	29	0.0037	18	0.0023			
	GC5	25	0.0032	14	0.0018			
	GC6	20	0.0025	13	0.0017			
	GD1	25	0.0032	13	0.0017			
	GD2	29	0.0037	23	0.0029			
	GD3	27	0.0034	0.0034 20				
	GD4	15	0.0019	11	0.0014			
Avera	ge	28	0.0035	15	0.0018			
RG	RA1	28	0.0036	10	0.0013			
	RA2	27	0.0034	12	0.0015			
	RA3	33	0.0042	13	0.0017			
	RA4	34	0.0043	12	0.0015			
	RA5	17	0.0022	12	0.0015			
	RA6	21	0.0027	15	0.0019			
	RA7	26	0.0033	15	0.0019			
	RB1	25	0.0032	13	0.0017			
	RB2	33	0.0042	15	0.0019			
	RB3	20	0.0025	10	0.0013			
	RB4	20	0.0025	10	0.0013			
	RG1	24	0.0031	15	0.0019			
	RW1	63	0.0080	23	0.0029			
Average		29	0.0036	13	0.0017			
MR	MA1	29	0.0037	12	0.0015			
	MA2	27	0.0034	14	0.0018			
	MB1	73	0.0093	25	0.0032			
	MB2	32	0.0041	15	0.0019			
	MB3	68	0.0087	16	0.0020			
	MC1	25	0.0032	11	0.0014			
Avera	qe	42	0.0054	16	0.0020			

	Table C-5									
	Der	nsity per H	abitat-Within-a-		Habitat					
Preserve	Habitat	Plot	# Individuals	Density/m2	# Species	Density/m2				
GG	Forest	GC1	19	0.0024		0.0014				
	Forest	GC2	20	0.0025	12	0.0015				
	Forest	GC3	19	0.0024	11	0.0014				
	Forest	GC4	29	0.0037	18	0.0023				
	Forest	GC5	25	0.0032	14	0.0018				
	Forest	GC6	20	0.0025	13	0.0017				
	Forest	GD1	25	0.0032	13	0.0017				
	Forest	GD2	29	0.0037	23	0.0029				
	Forest	GD3	27	0.0034	20	0.0025				
	Forest	GD4	15	0.0019	11	0.0014				
Avera	ge-Goodeno	w-Forest	23	0.0029	15	0.0019				
RG	Forest	RA1	28	0.0036	10	0.0013				
-	Forest	RA2	27	0.0034	12	0.0015				
	Forest	RA3	33	0.0042	13	0.0017				
	Forest	RA4	34	0.0043	12	0.0015				
	Forest	RA5	17	0.0022	12	0.0015				
	Forest	RA6	21	0.0027	15	0.0019				
	Forest	RA7	26	0.0033	15	0.0019				
	Forest	RB1	25	0.0032	13	0.0017				
	Forest	RB2	33	0.0042	15	0.0019				
	Forest	RB3	20	0.0025	10	0.0013				
	Forest	RB4	20	0.0025	10	0.0013				
Ave	age-Raccoc		26	0.0033	12	0.0016				
		ge-Forest	24	0.0031	14	0.0017				
GG	Grassland	GA1	27	0.0034	12	0.0015				
	Grassland	GA3	26	0.0033	9	0.0011				
	Grassland	GB1	33	0.0042	16	0.0020				
	Grassland	GB2	30	0.0038	16	0.0020				
Average-G	oodenow-G		29	0.0037	13	0.0017				
RG	Grassland	RG1	24	0.0031	15	0.0019				
	Raccoon-G		24	0.0031	15	0.0019				
MR	Grassland	MA1	29	0.0037	12	0.0015				
	Grassland	MB2	32	0.0041	15	0.0019				
	Grassland	MC1	25	0.0032	11	0.0014				
Avera	ge-Monee-G		29	0.0036	13	0.0016				
	Average-G		27	0.0035	14	0.0017				
GG	Wetland	GA2	41	0.0052	16	0.0020				
	Wetland	GB3	31	0.0039	12	0.0015				
	Wetland	GW1	56	0.0071	20	0.0025				
Average	-Goodenow		43	0.0054	16	0.0020				
RG	Wetland	RW1	63	0.0080	23	0.0029				
		-Wetland	63	0.0080	23	0.0029				
MR	Wetland	MA2	27	0.0034	14	0.0018				
	Wetland	MB1	73	0.0093	25	0.0032				
	Wetland	MB3	68	0.0087	16	0.0020				
Δνο	rage-Monee		56	0.0071	18	0.0020				

Appendix B: Amphibian and Reptile Monitoring Results

Table B-1 Amphibian and Reptile Monitoring Results Goodenow Grove Woodland							
Species	Drift fence #	#/Trap Night	Cover boards	Frog call surveys	Larval surveys	Egg mass surveys	Total
Blue-spotted Salamander	3	0.034	5			Y	9
Spotted Salamander						Y	1
Tiger Salamander					Y		1
American Toad							
Spring Peeper	52	0.602	1	Y			53
Western Chorus Frog	3	0.034		Y		Y	4
Plains Leopard Frog							
Bullfrog			1				1
Green Frog							
Northern Leopard Frog				Y	Y	Y	2
Smooth Green Snake							
Fox Snake							
Kirtland's Snake							
Northern Water Snake							
Brown Snake	3	0.034					3
Plains Garter Snake							
Common Garter Snake	11	0.125					11
Massasauga							
No. of species	5		3	3	2	4	9
Total Individuals	72		7				85

Table B-2 Amphibian and Reptile Monitoring Results Goodenow Grove Grassland							
Species	Drift fence #	#/Trap Night	Cover boards	Frog call surveys	Larval surveys	Egg mass surveys	Total
Blue-spotted Salamander							
Spotted Salamander							
Tiger Salamander							
American Toad							
Spring Peeper	1	0.011		Y			2
Western Chorus Frog	11	0.125		Y	Y	Y	14
Plains Leopard Frog							
Bullfrog							
Green Frog							
Northern Leopard Frog							
Smooth Green Snake	1	0.011	4				5
Fox Snake							
Kirtland's Snake	1	0.011					1
Northern Water Snake							
Brown Snake	1	0.011					1
Plains Garter Snake							
Common Garter Snake			2				2
Massasauga							
No. of species	5		2	2	1	1	6
Total Individuals	15		6				25

Table B-3 Amphibian and Reptile Monitoring Results Raccoon Grove							
Species	Drift fence #	#/Trap Night	Cover boards	Frog call surveys	Larval surveys	Egg mass surveys	Total
Blue-spotted Salamander							
Spotted Salamander							
Tiger Salamander					Y		1
American Toad							
Spring Peeper							
Western Chorus Frog	38	0.432		Y		Y	40
Plains Leopard Frog							
Bullfrog							
Green Frog							
Northern Leopard Frog	1	0.011		Y	Y	Y	4
Smooth Green Snake							
Fox Snake							
Kirtland's Snake							
Northern Water Snake							
Brown Snake	4	0.045					4
Plains Garter Snake	1	0.011					1
Common Garter Snake	2	0.023					2
Massasauga							
No. of species	5		0	2	2	2	6
Total Individuals	46		0				52

Table B-4 Amphibian and Reptile Monitoring Results Monee Reservoir							
Species	Drift fence #	#/Trap Night	Cover boards	Frog call surveys	Larval surveys	Egg mass surveys	Total
Blue-spotted Salamander							
Spotted Salamander							
Tiger Salamander							
American Toad				Y	Y		2
Spring Peeper							
Western Chorus Frog	1	0.011		Y			2
Plains Leopard Frog							
Bullfrog					Y		1
Green Frog							
Northern Leopard Frog							
Smooth Green Snake							
Fox Snake							
Kirtland's Snake							
Northern Water Snake							
Brown Snake	1	0.011	12				13
Plains Garter Snake	2	0.023	3				5
Common Garter Snake	5	0.057					5
Massasauga							
No. of species	4	4	2	2	2	0	6
Total Individuals	9	9	15	2	2		28

Appendix A: User Study Results

Exhibit 2 Survey Instrument

FREQUENCY OF RESPONSES:

FPDWC User Surveys from Goodenow Grove, Raccoon Grove, and Monee Reservoir

Final Results (June, 2004 through May, 2005)

Sample Sizes:

	Unweighted	Weighted *	
Overall	2,014	2,038	
Goodenow Grove	620	517	
Raccoon Grove	112	84	
Monee Reservoir	1,282	1,443	

* Data were weighted to correct for interviewing adjustments on days when every nth visitor was interviewed (instead of every visitor).

NOTE: The overall response rate was 87%, meaning 13% or an additional 296 visitors were asked to complete the survey but refused. Response rates did not vary significantly by site (85% at Goodenow Grove Nature Preserve, 89% at Raccoon Grove Nature Preserve, and 88% at Monee Reservoir).

Frequency of Responses

Hello. My name is ______ and I'm conducting a brief interview on behalf of the Forest Preserve District about your visit here today. It only takes about 2 or 3 minutes, and your answers are completely anonymous.

1. First, about how long did you visit (name of site) today?

	ALL	Goodenow Grove	Raccoon Grove	Monee Reservoir
	(n=2,038)	(n=619)	(n=110)	(n=1,301)
Average (mean) amount of time	2 hr. 27 min.	1 hr. 26 min.	0 hr. 33 min.	2 hr. 27 min.

	ALL	Goodenow Grove	Raccoon Grove	Monee Reservoir
	(n=2,281)	(n=717)	(n=125)	(n=1,438)
Drove/car/motorcycle	99%	99%	95%	99%
Walked/jogged	.05%	1%	4%	0%
Bicycle	.05%	0%	1%	1%
Other	0%	0%	0%	0%

2. And how did you arrive at the preserve today? (Including refusals)

3. And what did you do today at this preserve - which activities? (Multiple Responses)

	ALL	Goodenow Grove	Raccoon Grove	Monee Reservoir
	(n=2,031)	(n=616)	(n=110)	(n=1,297)
Walk/hike/jog/use trails	28%	50%	56%	19%
Bicycling	1%	1%	1%	1%
Picnic	12%	15%	1%	12%
Relax/reading	11%	11%	13%	10%
Bird watching	2%	3%	1%	1%
Nature/wildlife watching	5%	8%	5%	4%
Photography	1%	1%	5%	1%
Boating	7%	< 1%	0%	9%
Fishing	40%	1%	0%	56%
Horseback riding	< 1%	0%	0%	<1%
Sledding	5%	13%	0%	2%
Cross country ski/snowshoe	1%	2%	0%	1%
Walk pets	9%	21%	9%	4%
Playground	< 1%	1%	0%	0%
Sports activities (baseball, soccer, football, etc.)	3%	7%	1%	1%
Visit nature center, general	3%	11%	0%	<1%
Attend FPD ¹ program/event	7%	1%	0%	10%
Camping	< 1%	< 1%	0%	0%
Other	8%	10%	30%	6%

¹Forest Preserve District

4. Thinking about your overall experience at the preserve today, how would you rate it on a zero through ten scale? Zero means you are completely dissatisfied, ten means you are completely satisfied, and five is a neutral score.

	ALL	Goodenow Grove	Raccoon Grove	Monee Reservoir
	(n=2,039)	(n=623)	(n=110)	(n=1,300)
Mean rating	8.7	9.5	8.2	8.4
% Dissatisfied (0-4 Ratings)	5%	0%	5%	7%
% Very Satisfied (9-10 Ratings)	66%	86%	50%	59%

5A. (IF 0-4): Why are you dissatisfied/did you have a negative experience today? (PROBE) 5B. (IF 5-8): Why are you not more satisfied? How could it have been better?

Most Frequent Multiple Responses (n=668 cases): Too few fish/Understocked (24%); Poor fishing in general (18)%; Fish are too small/undersized (6%); Poor weather (4%); Too many ducks/geese (3%); Facility is too small (3%)

6. What, in your opinion, is the source of (that issue/those issues)? (PROBE FOR SPECIFICS)

Most frequent responses (n=318): Nature/Natural causes/Not man-made or development-related causes (63%); Not sure (17%); Reservoir is over-fished/Need to restock (14%); Chemicals/Weed killer in reservoir (5%); Pollution/Litter (1%)

7. And on a zero through ten scale, how satisfied were you with each of the following during your visit today. Zero means you are completely dissatisfied, ten is completely satisfied, and five is neutral. How would you rate:

		ALL		Good	denow Gro	ve	Rac	coon Grov	'e	Mone	ee Reserv	oir
	(n=2,039)		(n=623)		(n=110)		(n=1,301)				
	Avg. (Mean) Rating	% Dissat. (0-4)	% Very Satisf. (9-10)									
The level of noise at the preserve during your visit	9.2	2%	82%	9.6	0%	89%	8.6	4%	60%	9.2	3%	81%
Your ability to arrive at the preserve easily without any delays or traffic congestion	9.7	1%	94%	9.7	1%	93%	9.8	0%	97%	9.7	1%	94%
Overall air quality within the preserve	9.8	0%	95%	9.9	0%	98%	9.7	0%	93%	9.8	0%	94%
Overall water quality and cleanliness of lakes, ponds, & streams	8.6	4%	65%	9.4 (n=313)	1%	84%	7.9 (n=19)	0%	43%	8.5 (n=1101)	5%	61%
Overall cleanliness of the preserve property and facility	9.6	1%	9%	9.8	0%	96%	9.7	0%	93%	9.5	1%	89%

8. Did you observe any wildlife at the preserve today?

	ALL	Goodenow Grove	Raccoon Grove	Monee Reservoir
	(n=2,041)	(n=624)	(n=110)	(n=1,301)
Yes	67%	54%	38%	73%
No	33%	46%	62%	27%

8B. (IF YES): In general, do you believe that wildlife populations at this preserve are:

	ALL	Goodenow Grove	Raccoon Grove	Monee Reservoir
	(n=1,421)	(n=372)	(n=42)	(n=976)
Increasing	24%	24%	21%	25%
Decreasing	6%	4%	8%	7%
Or staying about the same?	35%	37%	32%	34%
(not sure/no opinion/not familiar)	35%	35%	39%	34%

8C. (IF DECREASING): Why do you think they are decreasing? (PROBE FOR SOURCES OF PROBLEMS)

Natural causes/cycles (41%); Too much development/Residential growth (25%); No idea/not sure (18%); Habitat destruction/Tree removal (5%); Too much auto traffic (3%)

9. Based on the number of people here today, did this facility seem to be particularly:

	ALL	Goodenow Grove	Raccoon Grove	Monee Reservoir
	(n=2,029)	(n=617)	(n=108)	(n=1,297)
Over-used	5%	2%	1%	6%
Under-used	24%	41%	42%	17%
Or did the level of usage seem appropriate	71%	57%	57%	77%

9B. (IF OVER- OR UNDER-USED): Is that a concern for you?

THOSE SAYING	ALL	Goodenow Grove	Raccoon Grove	Monee Reservoir
"OVER-USED"	(n=96)	(n=12)	(n=1)	(n=77)
Yes	53%	n=5	n=1	55%
No	47%	n=7	n=0	45%

THOSE SAYING	ALL	Goodenow Grove	Raccoon Grove	Monee Reservoir
"UNDER-USED"	(n=452)	(n=232)	(n=46)	(n=203)
Yes	16%	19%	17%	14%
No	84%	81%	83%	86%

9C. (IF YES): Why do you think it is (over-/under-used)?

"Overused" (n=45): Natural causes (53%); Over-fished/Limits not enforced (27%); Too many people, general (7%)

"Underused" (n=71): Not sure/No reason (91%); Chemicals in water/Weed killer (4%); Over-fished/Limits not enforced (3%)

10. When was the last time you visited this preserve?

	ALL	Goodenow Grove	Raccoon Grove	Monee Reservoir
	(n=2,003)	(n=613)	(n=109)	(n=1,275)
Yesterday/Previous Day	7%	11%	7%	6%
Within past week (2-7 days ago)	17%	12%	11%	9%
Within past month (2-4 weeks ago)	34%	33%	29%	35%
Within past year (2-12 months ago)	17%	20%	5%	16%
More than one year ago	18%	17%	23%	18%
Never before/First visit	14%	8%	5%	15%

10B. (IF WITHIN PREVIOUS YEAR): In the past twelve months, how many times have you visited this preserve?

	ALL	Goodenow	Raccoon	Monee
		Grove	Grove	Reservoir
	(n=1,360)	(n=461)	(n=56)	(n=845)
Mean number of visits (average)	32	50	55	24
Median (midpoint)	8	12	24	6

11. And during the next twelve months – do you think you will visit this preserve:

	ALL	Goodenow Grove	Raccoon Grove	Monee Reservoir
	(n=2,038)	(n=622)	(n=110)	(n=1,300)
More often	49%	45%	39%	51%
Less often	4%	2%	4%	4%
Or about as often has you have in the past twelve months?	43%	49%	54%	41%
(not sure/no idea)	4%	4%	3%	4%

12. In the past ____ month(s), have you completed a survey like this at:

	ALL	Goodenow Grove	Raccoon Grove	Monee Reservoir
	(n=2,035	(n=621)	(n=110)	(n=1,277)
% Yes – at Goodenow Grove	6%	18%	3%	2%
% Yes – at Raccoon Grove	1%	1%	10%	1%
% Yes – at Monee Reservoir	7%	2%	7%	8%

13. In what year were you born? (AGE CATEGORIES COMPUTED)

	ALL	Goodenow Grove	Raccoon Grove	Monee Reservoir
	(n=2,020)	(n=617)	(n=110)	(n=1,287)
18-29 years old	10%	10%	15%	9%
30-39 years old	18%	19%	19%	17%
40-49 years old	29%	34%	26%	28%
50-59 years old	20%	19%	18%	21%
60-69 years old	6%	13%	16%	17%
70+ years old	7%	4%	6%	8%
Avg. (mean) age	48	46.5	46	49

	ALL (n=2,044)	Goodenow Grove (n=624)	Raccoon Grove (n=110)	Monee Reservoir (n=1,304)
Immediate area	41%	57%	39%	36%
Other Will County	7%	3%	11%	9%
South Suburbs	34%	25%	22%	37%
Chicago	7%	2%	7%	8%
North Suburbs	1%	1%	2%	1%
Downstate Illinois	5%	3%	12%	5%
Indiana	2%	7%	4%	1%
Other	<1%	<1%	1%	0%
Refused	3%	1%	2%	4%

14. And what is your zip code? (MOST FREQUENT RESPONSES – 3% OR MORE)

Thank you very much for your time, those are all the questions I have. Have a great (day/evening).

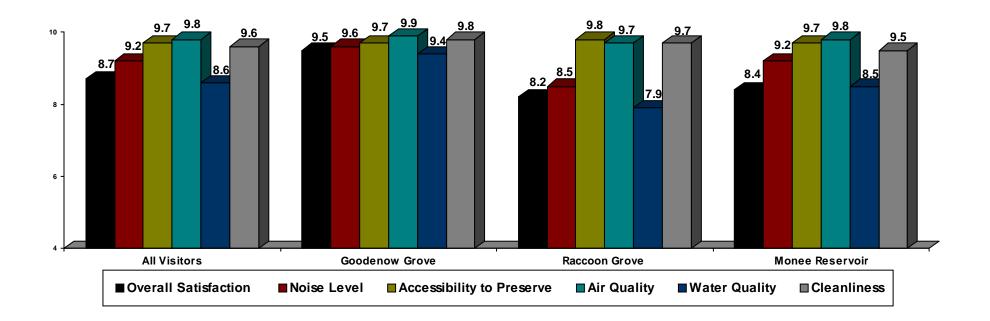
(NOTE GENDER): INCLUDING REFUSALS

Male	ALL (n=2,249) 69%	Goodenow Grove (n=706) 60%	Raccoon Grove (n=122) 81%	Monee Reservoir (n=1,417) 72%
Female	31%	40%	19%	28%

(RECORD IF VISITOR WAS): INCLUDING REFUSALS

	ALL	Goodenow Grove	Raccoon Grove	Monee Reservoir
	(n=2,239)	(n=713)	(n=124)	(n=1,403)
Alone	32%	37%	55%	29%
With other adults	54%	46%	42%	59%
With children	37%	36%	14%	34%

2004 Dates	of Data Collection (and groups/events)
June 17	Thursday
June 26	Saturday (Reel Kids Can Fish and Boy Scout group at Monee Reservoir)
June 28	Monday
July 15	Thursday
July 18	Sunday
July 28	Wednesday
August 6	Friday
August 26	Thursday (Cross-country meet at Goodenow Grove)
August 29	Sunday
September 8	Wednesday (Cross-country meet and school group at Goodenow Grove)
September 19	Sunday (Fly Fishing event at Monee Reservoir)
September 23	Thursday (Cross-country meet at Goodenow Grove)
October 6	Wednesday (Cross-country meet and school group at Goodenow Grove)
October 14	Thursday
October 30	Saturday (Halloween event at Goodenow Grove)
November 6	Saturday
November 19	Friday
November 22	Monday
December 3	Friday
December 16	Thursday
December 19	Sunday


Table A-1Dates of Data Collection at FPDWC Sites

2005 Dates	s of Data Collection (and groups/events)
January 8	Saturday (Musher event at Monee Reservoir)
January 25	Tuesday
January 27	Thursday
February 4	Friday
February 27	Sunday
February 28	Monday
March 7	Monday
March 15	Tuesday
March 19	Saturday
April 3	Sunday
April 12	Tuesday (School group at Goodenow Grove)
April 25	Monday
May 4	Wednesday (School group at Goodenow Grove)
May 20	Friday (School group at Goodenow Grove)
May 21	Saturday (Fishing derby at Monee Reservoir)

Table A-2 FPDWC User Demographics for Users at Goodenow Grove, Raccoon Grove and Monee Reservoir							
Region	% of cases	Communities (based on respondent's zip code)					
Immediate Area (Closest to the three Preserves)	41	Beecher, Crete, Monee, Peotone, University Park/Park Forest					
Other Will county (Outside Immediate Area)	7	Braidwood, Channahan, Frankfort, Joliet, Bolingbrook, Romeoville, Mokena, New Lenox, Wilmington, Plainfield, etc.					
South Chicago Suburbs	34	All Chicago suburbs south of the Eisenhower Expressway, with most respondents coming from Chicago Heights, Matteson, Steger, Richton Park					
City of Chicago	7	All Chicago zip codes					
North Suburbs	1	All Chicago suburbs north of the Eisenhower Expressway					
Other "Downstate" Illinois	5	Illinois Counties south and west of Will County					
Indiana	2	Mostly northwest Indiana communities					
Refused/Undetermined	3						

Exhibit 3 User Satisfaction at FPDWC Sites Overall and by Environmental Condition

Q. Thinking about your overall experience at the preserve today, how would you rate it on a zero through ten scale where zero means you are completely dissatisfied, ten means you are completely satisfied, and five is a neutral score?

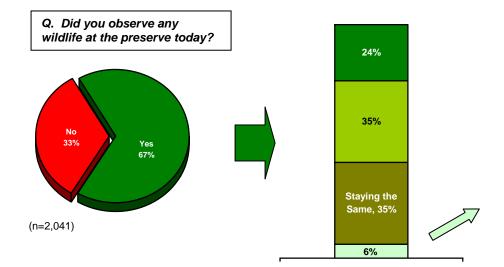


Table A-3 Sources of Lower Satisfaction Q. (If overall satisfaction is "8" or lower): Why are you dissatisfied/Why are you not more satisfied?								
Most Frequent Multiple Responses	All Sites (n=667)	Goodenow Grove (n=89)	Raccoon Grove (n=60)	Monee Reservoir (n=495)				
Fishing – too few, under stocked reservoir	25%	1%	0%	31%				
Fishing concerns, general	18%	1%	0%	22%				
Fishing – too small in size	7%	1%	0%	9%				
Too many weeds in water/reservoir	3%	0%	0%	4%				
Boat rental policy/ fees/condition of boats	2%	0%	0%	2%				
Weather (rain, heat, lack of snow, too windy)	7%	17%	7%	6%				
Too many ducks/geese (noise, waste)	3%	0%	0%	4%				
Too many bugs	2%	8%	9%	*				
Facility is too small	3%	1%	31%	1%				
Lack of playground, children recreation	2%	5%	0%	2%				
Lack of improvements (restrooms, tables)	2%	1%	17%	1%				
Poor upkeep (trail maintenance, mowing)	2%	7%	5%	1%				
Too crowded, too many people	1%	5%	0%	1%				
Hours of operation, closes too early	2%	3%	0%	2%				
No trail maps, trail info	1%	7%	7%	*				
Trails too muddy	1%	6%	8%	*				

*Less than 1%

Exhibit 4 Visitor Responses Concerning Wildlife at FPDWC Sites

Q. (IF YES): In general, do you believe that wildlife populations at this preserve are increasing, decreasing or staying about the same?

	. Why do you think wildlife populations are decreasing? (n=93)						
	Natural causes/cycles	41%					
	Development, Population moving in	25%					
	No idea, Not sure	18%					
Habitat destru	ction, tree removal, fewer wooded areas	5%					
Over-fished	reservoir, need to restock, enforce limits	3%					
٦	Foo much traffic, cars scare away wildlife	3%					
	Other	5%					

Exhibit 5 Visitor Responses Concerning Perceived Usage at FPDWC Sites

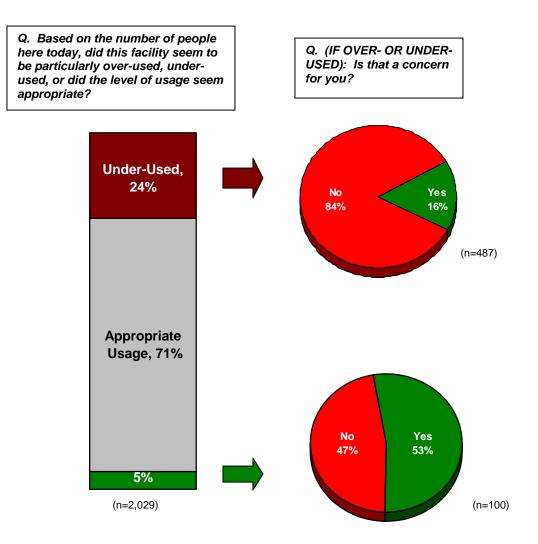
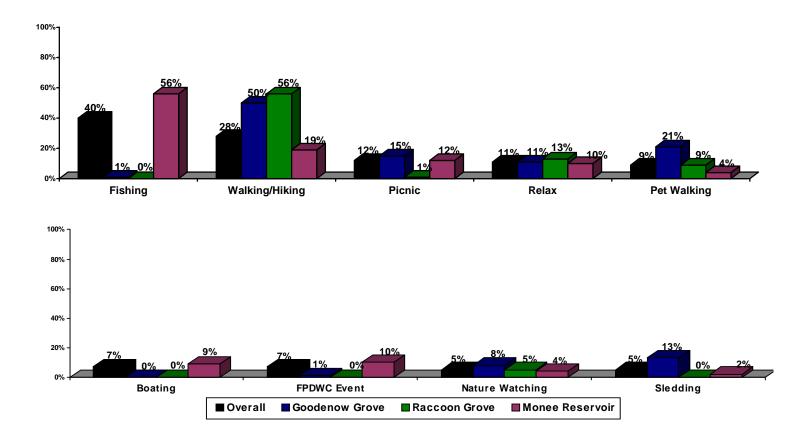



Exhibit 6 Most Frequent Activities Reported by Visitors Overall and at Goodenow Grove, Raccoon Grove and Monee Reservoir

Q. What did you do today at this preserve? What activities? (Most frequent multiple responses)

	Table A-4 Goodenow Grove Visitor Profiles: Most Frequent Activities										
	All Visitors	Walk/Hike/Jog	Pet Walking	Sledding	Picnic	Relaxing/Reading	Nature Watching				
Region	Local Area (57%)	Local Area (62%)	Local Area (74%)	S. Suburbs (36%)	Local Area (43%)	Local Area (48%)	Local Area (54%)				
	S. Suburbs (25%)	S. Suburbs (25%)	S. Suburbs (14%)	Local Area (35%)	S. Suburbs (31%)	S. Suburbs (39%)	S. Suburbs (31%)				
	Indiana (7%)	Indiana (6%)	Indiana (4%)	Indiana (21%)	Indiana (9%)	Indiana (9%)	Indiana (7%)				
	Other Will Co. (3%)	Other Will Co. (3%)	Other Will Co. (3%)	Other Will Co. (3%)	N. Suburbs (6%)		Other Will Co. (5%)				
	Downstate (3%)	Downstate (3%)	Downstate (3%)		Other Will Co. (5%)		Downstate (4%				
Age	40-49 (34%)	40-49 (33%)	40-49 (32%)	40-49 (41%)	40-49 (33%)	40-49 (33%)	40-49 (27%)				
Aye	50-59 (19%)	50-59 (18%)	50-59 (31%)	30-39 (33%)	50-59 (19%)	18-29 (22%)	60-69 (23%)				
	30-39 (19%)	30-39 (17%)	30-39 (15%)	18-29 (13%)	60-69 (18%)	60-69 (18%)	18-29 (18%)				
	60-69 (13%)	60-69 (16%)	60-69 (11%)	50-59 (11%)	30-39 (18%)	30-39 (17%)	30-39 (15%)				
	18-29 (10%)										
Gender	Men (60%)	Men (57%)	Men (61%)	Men (68%)	Women (53%)	Men (63%)	Women (62%)				

Meaningful differences by activity are in **bold and italics**, compared to all visitors at preserve.

	Table A-5Raccoon Grove Visitor Profiles:Most Frequent Activities								
	All Visitors	Walk/Hike/Jog							
Region	Local Area (39%) S. Suburbs (22%) Downstate (12%) Other Will Co. (11%) Chicago (7%) Indiana (4%)	Local Area (42%) S. Suburbs (25%) Other Will Co. (11%) Chicago (8%) Downstate (7%)							
Age	40-49 (26%) 60-69 (19%) 18-29 (18%) 50-59 (16%) 30-39 (15%)	40-49 (23%) 18-29 (20%) 60-69 (19%) 50-59 (16%) 30-39 (14%)							
Gender	Men (81%)	Men (81%)							

Meaningful differences by activity are in **bold and italics**, compared to all visitors at preserve.

		Mon	ee Reservoir Visito	Table A-6 or Profiles: Most Fre	equent Activities		
	All Visitors	Fishing	Walk/Hike/Jog	Relax/Read	Picnic	Boating	FPDWC Event
Region	S. Suburbs (37%)	S. Suburbs (43%)	Local Area (49%)	Local Area (45%)	Local Area (43%)	S. Suburbs (39%)	Local Area (37%)
	Local Area (36%)	Local Area (30%)	S. Suburbs (30%)	S. Suburbs (39%)	S. Suburbs (34%)	Local Area (27%)	S. Suburbs (31%)
	Other Will Co. (9%)	Chicago (11%)	Other Will Co. (11%)	Other Will Co. (8%)	Chicago (10%)	Other Will Co. (13%)	Other Will Co. (18%)
	Chicago (8%)	Other Will Co. (7%)	Chicago (5%)	Chicago (7%)	Downstate (7%)	Chicago (11%)	Downstate (8%)
	Downstate (5%)	Downstate (5%)			Other Will Co. (3%)	Downstate (8%)	
	1 /	T /	<i></i>		[/		1
Age	40-49 (28%)	40-49 (26%)	40-49 (27%)	60-69 (24%)	40-49 (31%)	40-49 (28%)	40-49 (39%)
	50-59 (21%)	50-59 (21%)	50-59 (25%)	70+ (21%)	30-39 (18%)	30-39 (24%)	30-39 (15%)
	60-69 (17%)	30-39 (19%)	60-69 (21%)	40-49 (22%)	60-69 (18%)	50-59 (22%)	50-59 (18%)
	30-39 (17%)	60-69 (17%)	30-39 (14%)	50-59 (19%)	50-59 (17%)	18-29 (14%)	
	18-29 (9%)						
	70+ (8%)						
Condor	Man (700/)	Mar (020/)	Man (C49()	Man (550()	Mamon (520/)	Man (020/)	
Gender	Men (72%)	Men (83%)	Men (64%)	Men (55%)	Women (52%)	Men (83%)	Women (56%)

Meaningful differences by activity are in **bold and italics**, compared to all visitors at preserve.

	Table A-7 Visitor Arrival Data: Goodenow Grove									
		Visi	tors	rs "Turnaround" (Entered Facility, But Non-			t Non-Visitor)			
Users	# Autos	# Motorcycles	# Bikes	# Pedestrians	# Autos	# Motorcycles	# Bikes	# Pedestrians		
	1,018	24	11	4	184	18	1	0		
# Adults	1,432	31	9	2	255	22	1	0		
# Children	1,025	3	2	2	33	0	0	0		
Total Visitors	2,457	34	11	4	288	22	1	0		

Table A-8 Projected Visitors and Non-Visitors: Goodenow Grove									
Users	(36 sampling o	Projected Visitors days X 10 = 360 days	s of operation)	"Turnaround" (Entered Facility, But Non-Visitor)					
	Survey Visitors (36 Days)	X 10 (to equal approximately 360 days of operation)	Projected Total Visitors	"Turnaround" Non- Visitors (36 days)	X 10 (to equal approximately 360 days of operation)	Projected Total of Turnarounds (Non-Visitors)			
Adults	1,474	10	14,740	278	10	2,780			
Children	1,032	10	10,320	33	10	330			
Total Visitors	2,506	10	25,060	311	10	3,110			

Table A-9 Average Visitors Per Car: Goodenow Grove								
Visitors Arriving By Car "Turnaround" Non-Visitors: Cars (
Avg. # of Adults Per Car	1.5	1.4						
Avg. # of Children Per Car	1.0	0.2						
Total Avg. # Per Car	2.5	1.6						

Table A-10 Visitor Arrival Data: Raccoon Grove									
		Visi	tors		"Turnaround" (Entered Facility, But Non-Visitor)				
Users	# Autos	# Motorcycles	# Bikes	# Pedestrians	# Autos	# Motorcycles	# Bikes	# Pedestrians	
	216	6	2	6	311	13	6	1	
# Adults	289	10	1	6	407	16	6	1	
# Children	49	0	1	0	22	1	0	0	
Total Visitors	338	10	2	6	429	17	6	1	

Table A-11 Projected Visitors and Non-Visitors: Raccoon Grove									
Users	(36 sampling o	Projected Visitors days X 10 = 360 days	s of operation)	"Turnaround" (Entered Facility, But Non-Visitor)					
	Survey Visitors (36 Days)	X 10 (to equal approximately 360 days of operation)	Projected Total Visitors	"Turnaround" Non- Visitors (36 days)	X 10 (to equal approximately 360 days of operation)	Projected Total of Turnarounds (Non-Visitors)			
Adults	306	10	3,060	430	10	4,300			
Children	50	10	500	23	10	230			
Total Visitors	356	10	3,560	453	10	4,530			

Table A-12 Average Visitors Per Car: Raccoon Grove				
	Visitors Arriving By Car	"Turnaround" Non-Visitors: Cars Only		
Avg. # of Adults Per Car	1.4	1.3		
Avg. # of Children Per Car	0.2	0.1		
Total Avg. # Per Car	1.6	1.4		

Table A-13 Visitor Arrival Data: Monee Reservoir								
	Visitors			"Turnaround" (Entered Facility, But Non-Visitor)				
Users	# Autos	# Motorcycles	# Bikes	# Pedestrians	# Autos	# Motorcycles	# Bikes	# Pedestrians
	2,331	42	73	5	389	11	21	0
# Adults	3,511	52	72	2	514	12	21	0
# Children	1,140	1	2	3	48	0	0	0
Total Visitors	4,651	53	74	5	562	12	21	0

Table A-14 Projected Visitors and Non-Visitors: Monee Reservoir							
	Projected Visitors (36 sampling days X 10 = 360 days of operation)			"Turnaround" (Entered Facility, But Non-Visitor)			
Users	Survey Visitors (36 Days)	X 10 (to equal approximately 360 days of operation)	Projected Total Visitors	"Turnaround" Non- Visitors (36 days)	X 10 (to equal approximately 360 days of operation)	Projected Total of Turnarounds (Non-Visitors)	
Adults	3,637	10	36,370	547	10	5,470	
Children	1,146	10	11,460	48	10	480	
Total Visitors	4,783	10	47,830	595	10	5,950	

Table A-15 Average Visitors Per Car: Monee Reservoir				
	Visitors Arriving By Car	"Turnaround" Non-Visitors: Cars Only		
Avg. # of Adults Per Car	1.5	1.3		
Avg. # of Children Per Car	0.5	0.1		
Total Avg. # Per Car	2.0	1.4		

Appendix F: Fish Monitoring Results

Table F-1 Fish Sampling Results					
Species	PLM-04 Plum Creek in Goodenow Grove July 2004	RCK-02 Rock Creek in Raccoon Grove June 2004			
Central stoneroller		1			
Common shiner	3				
Redfin shiner	1				
Bluntnose minnow	4				
Creek chub	4	17			
Pumpkinseed		1			
Bluegill	1	17			
Johnny darter	1				
No. of species	6	4			
Total Individuals	13	34			
Index of Biotic Integrity	34	36			

Appendix G: Benthic Macroinvertebrate Monitoring Results

Table G-12004 Benthic Macroinvertebrate ResultsSummary of Nature Preserve Sampling					
	Sample Station				
Таха	PLM-04	RCK-02			
Taxa	Plum Creek @ Bemes Road	Rock Creek in Raccoon Grove			
Crustacea					
Isopoda – <i>Asellidae</i>	1				
Diptera (Flies/Midges)					
Simulidae		2			
Ephemeroptera (Mayflies)					
Ephemerella	1				
Pelecypoda (Clams/Mussels)					
Sphaerium	1				
Trichoptera (Caddisflies)					
Hydropsychidae	1	2			
Total Taxa	4	2			
Total Individuals	4	4			
Macroinvertebrate Biotic Index	0.73	1.89			